Advertisement

Preparation and Characterization of NdFeB/PrCo5 Nanocomposite Magnetic Materials

  • Zhen Wang
  • Xiansong LiuEmail author
  • Zuhua Chen
  • Ruiwei Zhu
  • Wei Yang
  • Zongyang Zhang
  • Wei Wang
  • Qiuyue Wu
  • Khalid Mehmood Ur Rehman
  • Mudssir Shezad
Original Paper
  • 85 Downloads

Abstract

We first developed NdFeB/PrCo5 nanocomposite magnetic material by high-energy ball milling, and the influence of the different contents of PrCo5 on the magnetic properties of NdFeB was studied by means of XRD, DSC, and VSM. The results showed that compared with single-phase NdFeB permanent-magnet material, NdFeB/PrCo5 nanocomposite magnetic material has superior magnetic properties. When the content of PrCo5 is 10% and the time of ball milling is 10 h, the magnetic properties for NdFeB/PrCo5 nanocomposite magnetic material is best: coercivity is 13.2 kOe, which increased by 14.8% over pure NdFeB phase. Remanent magnetization is 96.31 emu/g and the saturation magnetization is 132.29 emu/g. The remanence ratio is 0.728.

Keywords

Nanocomposite magnetic material High-energy ball milling Magnetic properties 

Notes

Funding Information

The authors of this work acknowledge the financial support from the National Natural Science Foundation of China under Grant Nos. 51472004 and 51272003.

References

  1. 1.
    Hirosawa, S., Kanekiyo, H., Uehara, M.: J. Appl. Phys. 73, 6488–6490 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    Sun, X.K., Zhang, J., Chu, Y.L.: Appl. Phys. Lett. 74, 1740–1742 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Ruoho, S.: J. Mol. Neurosci. 58, 348–364 (2011)ADSGoogle Scholar
  4. 4.
    Sagawa, M., Hirosawa, S., Tokuhara, K.: J. Appl. Phys. 61, 35–38 (1987)CrossRefGoogle Scholar
  5. 5.
    Cui, X.G., Cheng, X.N., Xu, X.J.: Intermetallics 55, 118–120 (2014)CrossRefGoogle Scholar
  6. 6.
    Lian, J., Chang, J., Li, L.: Mater. Res. Innov. 19, S8-223–S8-228 (2015)CrossRefGoogle Scholar
  7. 7.
    Zhang, R., Liu, Y., Ye, J.: J. Alloy Compd. 427, 78–81 (2007)CrossRefGoogle Scholar
  8. 8.
    Hirosawa, S., Matsuura, Y., Yamamoto, H.: J. Appl. Phys. 59, 87–89 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    Doane, D.A.: J. Appl. Phys. 48, 2062–2068 (1977)ADSCrossRefGoogle Scholar
  10. 10.
    Yamamoto, T.A., Nishimaki, K., Harabe, T.: Nanostruct. Mater. 12, 523–526 (1999)CrossRefGoogle Scholar
  11. 11.
    Leinweber, P., Schulten, H.R.: Thermochim. Acta 200, 151–167 (1992)CrossRefGoogle Scholar
  12. 12.
    Matusita, K., Sakka, S., Matsui, Y.: J. Mater. Sci. 10, 961–966 (1975)ADSCrossRefGoogle Scholar
  13. 13.
    Nail, S.L., White, J.L., Hem, S.L.: J. Pharm. Sci. 65, 1391–1393 (2010)CrossRefGoogle Scholar
  14. 14.
    Li, J.L., Zhang, L.J., Wang, Y.X.: Mater. Lett. 98, 102–104 (2013)CrossRefGoogle Scholar
  15. 15.
    Bernardi, J., Fidler, J.: J. Appl. Phys. 76, 6241–6243 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhen Wang
    • 1
  • Xiansong Liu
    • 1
    Email author
  • Zuhua Chen
    • 1
  • Ruiwei Zhu
    • 1
  • Wei Yang
    • 1
  • Zongyang Zhang
    • 1
  • Wei Wang
    • 1
  • Qiuyue Wu
    • 1
  • Khalid Mehmood Ur Rehman
    • 1
  • Mudssir Shezad
    • 1
  1. 1.Engineering Technology Research Center of Magnetic Materials, School of Physics and Materials ScienceAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations