Annealing Effects on Microstructure and Magnetic Properties of (NdPr)9.5(FeNbCoCu)79.5(BC)11 Nanocomposite Magnets

  • Fang YangEmail author
  • GuangLe Dong
  • ZhiMeng Guo
  • YanLi Sui
Original Paper


Annealing effects on microstructure and magnetic properties of (NdPr)9.5(FeNbCo)79.5(BC)11 ribbons were investigated. It was observed that Nd2Fe14B and Fe3B phases were directly formed at low spinning speed. Then, the alloys transformed to an amorphous state at a speed of 20 m/s. Annealed at 700 C for 10 min, the amorphous alloys as-quenched at 20 m/s crystallized into a nanocomposite composed of Nd2Fe14B and \(\alpha \)-Fe phases. The formation of Fe3B phases was inhibited. The magnetic properties firstly increased and then decreased with the increasing of annealing time. The optimum magnetic properties were achieved in the alloys annealed at 700 C for 10 min. The corresponding coercivity, remanence, and the maximum energy product was 427.5 kA/m, 0.94 T, and 101.2 kJ/m3, respectively. In addition, fine and uniform grains were formed. The average grain size was 10 nm.


Nanocomposite magnets Nd2Fe14Annealing Magnetic properties Microstructure 


Funding Information

This study was supported by the National Natural Science Foundation of China under Grant No. 51174030.


  1. 1.
    Gutfleisch, O., Willard, M.A., Bruck, E., Chen, C.H., Sankar, S.G., Liu, J.P.: Magnetic materials and devices for 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821 (2011)CrossRefGoogle Scholar
  2. 2.
    Rong, C.B., Zhang, H.W., Chen, R.J., He, S.L., Shen, B.G.: The role of dipolar interaction in nanocomposite permanent magnets. J. Magn. Magn. Mater. 302(1), 126–136 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Hirosawa, S., Kanekiyo, H., Miyoshi, T., Shigemoto, Y., Murakami, K., Senzaki, Y., Nishiuchi, T.: Development of high-coercivity nanocomposite permanent magnets based on Nd2Fe14B and FexB. J. Alloy Compd. 408–412, 260–265 (2006)Google Scholar
  4. 4.
    Zhao, L.Z., Zhou, Q., Zhang, J.S., Jiao, D.L., Liu, Z.W., Greneche, J.M.: A nanocomposite structure in directly cast NdFeB based alloy with low Nd content for potential anisotropic permanent magnets. Mater. Des. 117(5), 326–331 (2017)CrossRefGoogle Scholar
  5. 5.
    Tao, S., Ahmad, Z., Ma, T., Yan, M.: Rapidly solidified Nd7Fe67 B 22Mo3Zr1 nanocomposite permanent magnets. J. Magn. Magn. Mater. 355, 164–168 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Liu, Z., Davies, H.: Intergranular exchange interaction in nanocrystalline hard magnetic rare earth-iron-boron melt-spun alloy ribbons. J. Phys. D Appl. Phys. 42, 145006 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Yu, Y.P., Li, J., Liu, Y., Wang, R.Q., Zheng, Q., Lian, L.X.: Highly oriented NdFeB nanocrystalline magnets from partially recombined compacts with ultrafine grain size by reactive deformation under low pressure. J. Rare Earth 33(12), 1298–1302 (2015)CrossRefGoogle Scholar
  8. 8.
    Li, H.L., Li, W., Zhang, Y.M., Gunderov, D.V., Zhang, X.Y.: Phase evolution, microstructure and magnetic properties of bulk \(\alpha \)-Fe/Nd2Fe14B nanocomposite magnets prepared by severe plastic deformation and thermal annealing. J. Alloy Compd. 651, 434–439 (2015)CrossRefGoogle Scholar
  9. 9.
    Hirosawa, S., Kanekiyo, H., Shigemoto, Y., Murakami, K., Miyoshi, T., Shioya, Y.: Solidification and crystallization behaviors of Fe3B/Nd2Fe14B-based nanocomposite permanent-magnet alloys and influence of micro-alloyed Cu, Nb and Zr. J. Magn. Magn. Mater. 239, 424–429 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Coehoorn, R., De Mooij, D.B., Waard, D.: Meltspun permanent magnet materials containing Fe3B as the main phase. J. Magn. Magn. Mater. 80(1), 101–104 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    Hadjipanayis, G.C.: Nanophase hard magnets. J. Magn. Magn. Mater. 200(1–3), 373–391 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Takeuchi, A., Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46(12), 2817–2829 (2005)CrossRefGoogle Scholar
  13. 13.
    Chang, H.W., Lin, W.C., Shih, C.W., Hsieh, C.C., Chang, W.C.: Magnetic properties, phase evolution, and microstructure of directly cast Nd-Fe-Nb-Sn-B bulk magnets. J. Alloy Compd. 545, 231–235 (2012)CrossRefGoogle Scholar
  14. 14.
    Wu, Y.Q., Kramer, M.J., Chen, Z., Ma, B.M., Miller, M.K.: Behavior of Nb atoms in Nb substituted Nd2Fe14B nanocrystalline alloys investigated by atom probe tomography. IEEE Trans. Magn. 40(4), 2886–2888 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    You, C.Y., Ping, D.H., Hono, K.: Magnetic properties and microstructure of Fe3B/Pr2Fe14B-type nanocomposite magnets with Co and Cr additions. J. Magn. Magn. Mater. 299(1), 136–144 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Derewnicka-Krawczynska, D., Ferrari, S., Bilovol, V., Pagnola, M., Morawiec, K., Saccone, E.D.: Influence of Nb, Mo and Ti as doping metals on structure and magnetic response in NdFeB based melt spun ribbons. J. Magn. Magn. Mater. 462, 83–95 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, S.Y., Hui, X., Ni, J.S., Wang, H.L., Bai, Q., Dong, Y.D.: Effect of gallium addition on magnetic properties of Nd2Fe14B-based/α-Fe nanocomposite magnets. J. Rare Earth 25(1), 74–78 (2007)CrossRefGoogle Scholar
  18. 18.
    Gholamipour, R., Beitollahi, A., Marghusian, V.K., Ohkubo, T.: Cu effects on coercivity and microstructural features in nanocrystalline Nd-Fe-Co-B annealed melt-spun ribbons. Physica B 398(1), 51–54 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Hussain, H., Liu, J., Zhao, L.Z., Zhong, X.C., Zhang, G.Q., Liu, Z.W.: Composition related magnetic properties and coercivity mechanism for melt spun [(La0.5Ce0.5)1−xRex]10Fe84 B 6 (RE=Nd or Dy) nanocomposite alloys. J. Magn. Magn. Mater. 399, 26–31 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Qian, D.Y., Hussain, M., Zheng, Z.G., Zhong, X.C., Gao, X.X., Liu, Z.W.: Compositional optimization for nanocrystalline hard magnetic MRE-Fe-B-Zr alloys via modifying RE and B contents. J. Magn. Magn. Mater. 384(15), 87–92 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Dong, G.L., Yang, F., Chen, F.H., Li, Z.X., Sui, Y.L., Ji, P., Guo, Z.M.: Influence of Cu content on crystallization Kinetics and microstructure of Nd-Fe-B thick ribbons. J. Supercond. Nov. Magn. 30(11), 3231–3239 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fang Yang
    • 1
    Email author
  • GuangLe Dong
    • 2
  • ZhiMeng Guo
    • 1
  • YanLi Sui
    • 3
  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Tianjin Sanhuan Lucky New Materials, Inc.TianjinChina
  3. 3.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations