Advertisement

Mössbauer Studies and Magnetic Properties of Cubic CuFe2O4 Nanoparticles

  • Md. Amir
  • H. Gungunes
  • Y. Slimani
  • N. Tashkandi
  • H. S. El Sayed
  • F. Aldakheel
  • M. Sertkol
  • H. Sozeri
  • A. Manikandan
  • I. Ercan
  • A. BaykalEmail author
Original Paper

Abstract

This study reports the preparation and characterization of nanocrystalline spinel powder of cubic copper ferrite nanoparticles (NPs) which have been fabricated via a cost-effective citrate sol–gel approach. The structural and morphological properties of the nanoparticles are analyzed by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), and scanning electron microscopy (SEM) whereas magnetic properties and Mössbauer analysis were performed using vibrating sample magnetometer (VSM) and Mössbauer spectra, respectively, and were characterized in detail. The empirical aim of this study is to perceive the transition phase of CuFe2O4 as cubic symmetry which was confirmed by SEM images, and a couple of studies reported on the cubic structure of copper ferrite and discussed the magnetic properties. However, the present study gives the detailed information of the formation of cubic structure and magnetic behavior of the CuFe2O4 cubic structure. X-ray diffraction measurements of resulting NPs show that the grain size of the particles is about 42.08 nm while SEM analysis showed that the particles have cubic nanostructured shapes with non-homogeneous sizes in around 80–100 nm. From 57Fe, Mössbauer parameters consist of one superparamagnetic doublet and superposition of four sextets. VSM result shows the enhanced superparamagnetic nature of the CuFe2O4 NPs.

Keywords

CuFe2O4 NPs Cubic structure Superparamagnetism Mössbauer study Cation distribution 

Notes

Funding Information

The Deanship of Scientific Research (DSR) and Institute for Research and Medical Consultations (IRMC) of Imam Abdulrahman Bin Faisal University are highly acknowledged for providing the financial assistance for this study (project application number: 2017-605-IRMC).

References

  1. 1.
    Hong, J., Xu, D.M., Yu, J.H., Gong, P.J., Ma, H.J., Yao, S.D.: Nanotechnol 18, 135608 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Park, J.H., Maltzahn, G.V., Zhang, L.L., Schwartz, M.P., Ruoslahti, E., Bhatia, S.N., Sailor, M.J.: Adv. Mater. 20, 1630–1635 (2008)CrossRefGoogle Scholar
  3. 3.
    Haija, M.A., Abu-Hani, A.F.S., Hamdan, N., Stephen, S., Ayesh, A.I.: Characterization of H2S gas sensor based on CuFe2 O 4 nanoparticles. J. Alloy Compd. 690, 461–468 (2017)CrossRefGoogle Scholar
  4. 4.
    Zaharieva, K., Rives, V., Tsvetkov, M., Cherkezova-Zheleva, Z., Kunev, B., Trujillano, R., Mitov, I., Milanova, M.: Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation. Mater. Chem. Phys. 160, 271–278 (2015)CrossRefGoogle Scholar
  5. 5.
    Wojtowicz, P.J.: Theoretical model for tetragonal-to-cubic phase transformations in transition metal spinels. Phys. Rev. 116, 32 (1959)ADSCrossRefGoogle Scholar
  6. 6.
    Krupicka, S., Novak, P.: In: Wohlfarth, E.P. (ed.) Ferromagnetic Materials, vol. 3. North Holland, Amsterdam (1982)Google Scholar
  7. 7.
    Tang, X.X., Manthiram, A., Goodenough, J.B.: Copper ferrite revisited. J. Solid State Chem. 79, 250 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Pajíc, D, Zadro, K, Vanderberghe, R E, Nedkov, I.: Superparamagnetic relaxation in CuxFe3−x O 4 (x = 0.5 and x = 1) nanoparticles. J. Magn. Magn. Mater. 281, 353 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Masoumi, S., Nabiyouni, G., Ghanbari, D.: Photo-degradation of azo dyes: photo catalyst and magnetic investigation of CuFe2O4–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. Electron. 27, 9962–9975 (2016)CrossRefGoogle Scholar
  10. 10.
    Nabiyouni, G., Sharifi, S., Ghanbari, D., Salavati-Niasari, M.: A simple precipitation method for synthesis CoFe2O4 nanoparticles. J. Nanostruct. 4(3), 317–323 (2014)Google Scholar
  11. 11.
    Hou, H., Xu, G., Tan, S., Zhu, Y.: A facile sol-gel strategy for the scalable synthesis of CuFe2 O 4 nanoparticles with enhanced infrared radiation property: influence of the synthesis conditions. Infrared Phys. Technol. 85, 261–265 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Shettya, K., Renuka, L., Nagaswarupa, H.P., Nagabhushana, H., Anantharaju, K.S., Rangappa, D., Prashantha, S.C., Ashwini, K.: A comparative study on CuFe2 O 4, ZnFe2 O 4 and NiFe2 O 4: morphology, impedance and photocatalytic studies. Mater. Today Proc. 4, 11806–11815 (2017)CrossRefGoogle Scholar
  13. 13.
    Haija, M.A., Abu-Hani, A.F.S., Hamdan, N., Stephen, S., Ayesh, A.I.: Characterization of H2S gas sensor based on CuFe2 O 4 nanoparticles. J. Alloys Compd. 690, 461–468 (2017)CrossRefGoogle Scholar
  14. 14.
    Agouriane, E., Rabi, B., Essoumhi, A., Razouk, A., Sahlaoui, M., Costa, B.F.O., Sajieddine, M.: Structural and magnetic properties of CuFe2 O 4 ferrite nanoparticles synthesized by co-precipitation. J. Mater. Environ. Sci. 7(11), 4116–4120 (2016)Google Scholar
  15. 15.
    Amir, Md., Baykal, A., Güner, S., Güngüneş, H., Sözeri, H.: Magneto-optical investigation and hyperfine interactions of copper substituted Fe3 O 4 nanoparticles. Ceram. Int. 42, 5650–5658 (2016)CrossRefGoogle Scholar
  16. 16.
    Balagurov, A.M., Bobrikov, I.A., Maschenko, M.S., Sangaa, D., Simkin, V.G.: Structural phase transition in CuFe2 O 4 spinel. Crystallograp. Rep. 58(2), 710–717 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Kanagaraj, M., Sathishkumar, P., Selvan, G.K., Kokila, I.P., Arumugam, S.: Structural and magnetic properties of CuFe2 O 4 as prepared and thermally treated spinel nanoferrites. Ind. J. Pure Appl. Phys. 52, 124–130 (2014)Google Scholar
  18. 18.
    Baykal, A., Güngüneş, H., Sözeri, H., Amir, Md., Auwal, I., Asiri, S., Shirsath, S.E., Demir Korkmaz, A.: Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted BaFe12 O 19 hexaferrites. Ceram. Int. 43, 15486–15492 (2017)CrossRefGoogle Scholar
  19. 19.
    Sreedhar, B., Kumar, A.S., Reddy, P.S.: Magnetically separable Fe3O4 nanoparticles: an efficient catalyst for the synthesis of propargylamines. Tetrahedron. Lett. 51(14), 1891–1895 (2010)CrossRefGoogle Scholar
  20. 20.
    Baykal, A., Esir, S., Demir, A., Güner, S.: Magnetic and optical properties of Cu1−xZnxFe2 O 4 nanoparticles dispersed in a silica matrix by a sol-gel auto-combustion method. Ceram. Int. 41, 231–239 (2015)CrossRefGoogle Scholar
  21. 21.
    Almessiere, M.A., Slimani, Y., Baykal, A.: Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2018.02.101 CrossRefGoogle Scholar
  22. 22.
    Güner, S., Amir, Md., Geleri, M., Sertkol, M., Baykal, A.: Magneto-optical properties of Mn3+ substituted Fe3 O 4 nanoparticles. Ceram. Int. 41, 10915–10922 (2015)CrossRefGoogle Scholar
  23. 23.
    Najmoddin, N., Beitollahi, A., Devlin, E., Kavas, H., Mohseni, S.M., Åkerman, J., Niarchos, D., Rezaie, H., Muhammed, M., Toprak, M.S.: Magnetic properties of crystalline mesoporous Zn-substituted copper ferrite synthesized under nanoconfinement in silica matrix. Microporous Mesoporous Mater. 190, 346–355 (2014)CrossRefGoogle Scholar
  24. 24.
    Najmoddin, N., Beitollahi, A., Kavas, H., Majid Mohseni, S., Rezaie, H., Åkerman, J., Toprak, M.S.: XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2 O 4. Ceram. Int. 40, 3619–3625 (2014)CrossRefGoogle Scholar
  25. 25.
    Coey, J.M.D.: Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    Pankhurst, Q.A., Pollard, R.J.: Origin of the spin-canting anomaly in small ferrimagnetic particles. Phys. Rev. Lett. 67, 248–250 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    del Muro, M.G., Batlle, X., Labarta, A.: Erasing the glassy state in magnetic fine particles. Phys. Rev. B 59, 13584–13587 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Devlin, E., Kostikas, A.: Size-dependent magnetic properties of MnFe2 O 4 fine particles synthesized by coprecipitation. Phys. Rev. B 54, 9288–9296 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Vollath, D., Szabó, D.V., Taylor, R.D., Willis, J.O.: Synthesis and magnetic properties of nanostructured maghemite. J. Mater. Res. 12, 2175–2182 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Bozorth, R.M., Tilden, E.F., Williams, A.J.: Anisotropy and magnetostriction of some ferrites. Phys. Rev. 99, 1788–1798 (1955)ADSCrossRefGoogle Scholar
  31. 31.
    Brabers, V.A.M.: Progress in spinel ferrite research. In: Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, chapter 3, vol. 8, pp 189–324. Elsevier, Amsterdam (1995)Google Scholar
  32. 32.
    Jiang, J.Z., Goya, G.F., Rechenberg, H.R.: Magnetic properties of nanostructured CuFe2 O 4. J. Phys. Condens. Matter 11, 4063–4070 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    Almessiere, M.A., Slimani, Y., Güngüneş, H., El Sayed, H.S., Baykal, A.: AC susceptibility and Mossbauer study of Ce3+ ion substituted SrFe12 O 19 nanohexaferrites. Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2018.03.064 CrossRefGoogle Scholar
  34. 34.
    Rondinone, A.J., Liu, C., Zhang, Z.J.: Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles. J. Phys. Chem. B 105, 7967–7971 (2001)CrossRefGoogle Scholar
  35. 35.
    Verma, K., Kumar, A., Varshney, D.: Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2 O 4. Curr. Appl. Phys. 13, 467–473 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Baykal, A., Amir, Md., Güner, S., Sözeri, H.: Preparation and characterization of SPION functionalized via caffeic acid. J. Magn. Magn. Mater. 395, 199–204 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Almessiere, M.A., Slimani, Y., El Sayed, H.S., Baykal, A.: Structural and magnetic properties of Ce-Y substituted strontium nanohexaferrites. Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2018.04.045 CrossRefGoogle Scholar
  38. 38.
    Carrey, J., Mehdaoui, B., Respaud, M.: Simple models for dynamics hysteresis loop calculations of magnetic single domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Dobson, D., Linnett, J., Rahman, M.: Mössbauer studies of the charge transfer process in the system ZnxFe3−x O 4. J. Phys. Chem. Solids 31, 2727–2733 (1970)ADSCrossRefGoogle Scholar
  40. 40.
    Najmoddin, N., Beitollahi, A., Muhammed, M., Ansari, N., Devlin, E., Mohseni, S.M., Rezaie, H., Niarchos, D., Åkerman, J., Toprak, M.S.: Effect of nanoconfinement on the formation, structural transition and magnetic behavior of mesoporous copper ferrite. J. Alloys Compd. 598, 191–197 (2014)CrossRefGoogle Scholar
  41. 41.
    Velinova, N., Petrova, T., Genova, I., Ivanova, I., Tsoncheva, T., Idakieva, V., Kuneva, B., Mitov, I.: Synthesis and Mössbauer spectroscopic investigation of copper-manganese ferrite catalysts for water-gas shift reaction and methanol decomposition. Mater. Res. Bull. 95, 556–562 (2017)CrossRefGoogle Scholar
  42. 42.
    Ristić, M., Hannoyer, B., Popović, S., Musić, S., Bajraktaraj, N.: Ferritization of copper ions in the Cu–Fe–O system. Mater. Sci. Eng. B 77, 73–82 (2000)CrossRefGoogle Scholar
  43. 43.
    Slimani, Y., Güngüneş, H., Nawaz, M., Manikandan, A., El Sayed, H.S., Almessiere, M.A., Sözeri, H., Shirsath, S.E., Ercan, I., Baykal, A.: Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2018.05.028 CrossRefGoogle Scholar
  44. 44.
    Ok, H.N., Baek, K.S., Lee, H.S., Kim, C.S.: Mössbauer study of Cu0.5Fe0.5Cr2 S 4. Phys. Rev. B 41, 62–64 (1990)ADSCrossRefGoogle Scholar
  45. 45.
    Baldha, G., Kulkarni, R.: Mössbauer study of the spinel system GexCu1−xFe2 O 4. Solid State Commun. 49, 169–172 (1984)ADSCrossRefGoogle Scholar
  46. 46.
    Thummer, K.P., Chhantbar, M.C., Modi, K.B., Baldha, G.J., Joshi, H.H.: Localized canted spin behaviour in ZnxMg1.5−xMn0.5FeO4 spinel ferrite system. J. Magn. Magn. Mater. 280, 23–30 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Md. Amir
    • 1
  • H. Gungunes
    • 2
  • Y. Slimani
    • 3
  • N. Tashkandi
    • 4
  • H. S. El Sayed
    • 4
  • F. Aldakheel
    • 4
  • M. Sertkol
    • 5
  • H. Sozeri
    • 6
  • A. Manikandan
    • 7
  • I. Ercan
    • 3
  • A. Baykal
    • 4
    Email author
  1. 1.Instrument Design and Development Centre (IDDC)Indian Institute of Technology DelhiNew DelhiIndia
  2. 2.Department of PhysicsHitit UniversityÇevre Yolu Bulvarı-ÇorumTurkey
  3. 3.Department of Biophysics, Institute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  4. 4.Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  5. 5.Deanship of Preparatory Year, Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  6. 6.TÜBITAK-UMENational Metrology InstituteGebzeTurkey
  7. 7.Department of Chemistry, Bharath Institute of Higher Education and ResearchBharath UniversityChennaiIndia

Personalised recommendations