Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 205–211 | Cite as

Magnetic Field Effects on Optical Conductivity of Doped Armchair Graphene Nanoribbon

  • H. RezaniaEmail author
  • A. Kheiri Satar
Original Paper


We address the optical conductivity of armchair graphene nanoribbon within tight-binding model Hamiltonian using Green’s function approach. The possible effects of ribbon width, magnetic field, and chemical potential on optical absorption are investigated. We have also found the dependence of the optical conductivity for various ribbon widths and chemical potentials. Our results show a peak appears in the frequency dependence of optical conductivity of graphene nanoribbon. Upon increasing ribbon width, the height of the optical conductivity at frequency of peak increases. Also, applying the magnetic field causes an increase of the optical conductivity. However, upon more increase of the magnetic field leads to a decrease of the optical conductivity. Moreover, we study the effects of chemical potentials on frequency behavior of optical absorption of graphene nanoribbon for both metallic and insulator cases.


A. Armchair D. nanoribbon D. Green’s function 


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V.: Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Geim, A.K., Novoselov, K.S.: Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R.: Phys. World 19, 33 (2005)CrossRefGoogle Scholar
  4. 4.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Slater, J.C., Koster, G.F.: Phys. Rev. 94, 1498 (1954)ADSCrossRefGoogle Scholar
  6. 6.
    Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical properties of carbon nanotubes. Imperial College, London (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Wang, S.K., Wang, J.: Phys. Rev. B 92(7), 075419 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Sun, M., Chou, J.-P., Ren, Q., Zhao, Y., Yu, J., Tang, W.: Appl. Phys. Lett. 110, 173105 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Sun, M., Chou, J.-P., Yu, J., Tang, W.: Phys. Chem. Chem. Phys. 19, 17324 (2017)CrossRefGoogle Scholar
  10. 10.
    Sun, M., Ren, Q., Zhao, Y., Chou, J-P., Tang, W.: Carbon 120, 265 (2017)CrossRefGoogle Scholar
  11. 11.
    Sun, M., Tang, W., Ren, Q., Wang, S., Zhang, Y.: Appl. Surf. Sci. 356, 668 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Sun, M., Tang, W., Ren, Q., Zhao, Y., Hao, Y.: Physica E: Low-dimens Syst Nanostruct 80, 142 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Tao, W.-W., Liu, B., Dai, Q., Wang, S.-K.: Commun. Theor. Phys. 61(3), 391 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Tian, H., Wang, S., Hu, J., Wang, J.: J. Phys. Condens. Matter 27(12), 125005 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Li, C.-X., Wang, S.-K., Wang, J.: Chin. Phys. B 26(2), 027304 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Fujita, M., Wakabayash, K., Nakada, K., Kusakabe, K.: J. Phys. Soc. Jpn. 65, 1920 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Phys. Rev. B 54, 17954 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    Ezawa, M.: Phys. Rev. B 73, 045432 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Tan, T.-W., Stormer, H.L., Kim, P.: Nature (London) 438, 201 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Berger, C.: J. Phys. Chem. B 108, 19912 (2004)CrossRefGoogle Scholar
  21. 21.
    Wakbayashi, K., Sigrist, M., Fujita, M.: J. Phys. Soc. Jpn. 67, 2089 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Sasaki, K., Murakam, S., Saito, R.: J. Phys. Soc. Jpn. 75, 074713 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Sasaki, K., Murakami, S., Saito, R.: Appl. Phys. Lett. 88, 113110 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Brey, L., Fertig, H.A., Das Sarma, S.: Phys. Rev. Lett. 99, 116802 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Wang, J.J., Liu, S., Wang, J., Liu, J.-F.: Sci. Rep. 7(1), 10236 (2017)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Gusynin, V.P., Sharapov, S.G.: Phys. Rev. B 73, 245411 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Wunsch, B., Stauber, T., Sols, F., Guinea, F.: New. J. Phys. 8, 318 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Hwang, E.H., Das Sarma, S.: Phys. Rev. B 75, 205418 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Zheng, H., Wang, Z.F., Luo, T., Shi, Q.W.: Phys. Rev. B 75, 165414 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Mahan, G.D.: Many particle physics. Plenumn, New York (1993)Google Scholar
  31. 31.
    Wang, S., Wang, J.: Phys. B Condens. Matter 458, 22–26 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsRazi UniversityKermanshahIran

Personalised recommendations