Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 237–246 | Cite as

Study of Nucleation/Annihilation Process and Vortices Characteristics in Co/Py Rectangular Bilayers

  • M. Fattouhi
  • M. Y. El Hafidi
  • M. El HafidiEmail author
  • A. Kassiba
  • N. Yaacoub
Original Paper

Abstract

Vortices are topological structures, which are characterized by circular organization of magnetic moments and by chirality. In this paper, we investigate the impact of film lateral dimensions and thicknesses on magnetization reversibility by applying an in-plane external magnetic field on Co(tCo)/Py (3 nm) bilayers where the Py is the permalloy, a ferromagnetic alloy of nickel and iron (Ni80Fe20). The study is achieved by using appropriate micromagnetic simulations. We also show that the vortices number and their sizes can be controlled by playing on the lateral dimensions and the thickness of the bilayer.

Keywords

Vortices Nucleation Annihilation Permalloy Cobalt Micromagnetic simulations Magnetic force microscopy (MFM) Rectangular films Reversal magnetization 

References

  1. 1.
    Vasconcelos, T.C., Ramos, J.G.G.S., Barbosa, A.L.R.: Phys. Rev. B 93, 115120 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Ramos, J.G.G.S., Hussein, M.S., Barbosa, A.L.R.: Phys. Rev. B 93, 125136 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Bazeia, D., Ramos, J.G.G.S., Rodrigues, E.I.B.: J. Magn. Magn. Mater. 423, 411 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Kolesnikov, A.G., Samardak, A.S., Stebliy, M.E., Ognev, A.V., Chebotkevich, L.A., Sadovnikov, A.V., Nikitov, S.A., JinKim, Y., HoCha, I., KeunKim, Y.: J. Magn. & Magn. Mater 429, 221 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Yin, G., Li, Y., Kong, L., Lake, R.K., Chien, C.L., Zang, J.: Phys. Rev. B 93, 174403 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Wintz, S., Bunce, C., Neudert, A., Körner, M., Strache, T., Buhl, M., Erbe, A., Gemming, S., Raabe, J., Quitmann, C., Fassbender, J.: Phys. Rev. Lett. 110, 177201 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Braun, H.-B.: Adv. Phys. 61, 1 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Siracusano, G., Tomasello, R., Giordano, A., Puliafito, V., Azzerboni, B., Ozatay, O., Carpentieri, M., Finocchio, G.: Phys. Rev. Lett. 117, 087204 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Vila, L., Darques, M., Encinas, A., Ebels, U., George, J.M., Faini, G., Thiaville, A., Piraux, L.: Phys. Rev. B 79, 172410 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Betto, D., Coey, J.M.D.: vol. 115 (2014)Google Scholar
  11. 11.
    Schneider, M., Hoffmann, H., Zweck, J.: Appl. Phys. Lett. 77, 2909 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Goiriena-Goikoetxea, M., et al.: Nanoscale 9, 11269–11278 (2017)CrossRefGoogle Scholar
  13. 13.
    Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K., Ono, T.: Science 289, 930–932 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Geng, L.D., Jin, Y.M.: J. Magn. & Magn. Mat. S0304–8853, 32176 (2016)Google Scholar
  15. 15.
    Fert, A., Sampaio, J.: Nat. Nanotechnol. 8, 152 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Draaisma, H.J.G., de Jonge, W.J.M.: J. Appl. Phys. 64, 3610 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    Hrabec, A., Gonçalves, F.J.T., Spencer, C.S., Arenholz, E., N’Diaye, A.T., Stamps, R.L., Marrows, C.H.: Phys. Rev. B 93, 014432 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Kumar, D., Adeyeye, AO: J. Phys. D: Appl. Phys. 50, 343001 (2017)CrossRefGoogle Scholar
  19. 19.
    Scheinfein, M.R., Unguris, J., Blue, J.L., Coakley, K.J., Pierce, D.T., Celotta, R.J., Ryan, P.: Phys. Rev. B 43, 3395 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    Hubert, A., Schäfer, R.: Magnetic domains: the analysis of magnetic microstructures. Springer (2000)Google Scholar
  21. 21.
    Cowburn, R.P., Koltsov, D.K., Adeyeye, A.O., Welland, M.E., Tricker, D.M.: Phys. Rev. Lett. 83, 1042 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K., Ono, T.: Science 289, 930–932 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., Van Waeyenberge, B.: A.I.P. Advances 4, 107133 (2014)ADSGoogle Scholar
  24. 24.
    Miltat, J.E., Donahue, M.J.: Numerical micromagnetics: finite difference methods. In: Handbook of magnetism and advanced magnetic materials, Wiley.  https://doi.org/10.1002/9780470022184 (2007)
  25. 25.
    Lai, M., Wei, Z., Wu, J.C., Chang, C., Hsieh, W.Z., Lai, J.-Y.: IEEE Trans. Magn. 41, 944 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Stebliy, M.E., Ognev, A.V., Samardak, A., Kolesnikov, A.G., Chebotkevich, L.A., Han, X.: vol. 117 (2015)Google Scholar
  27. 27.
    Cowburn, R.P., Koltsov, D.K., Adeyeye, A.O., Welland, M.E.: Phys. Rev. Lett. 83(5), 1042 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Guslienko, K. Yu., Han, X.F., Keavney, D.J., Divan, R., Bader, S.D.: Phys. Rev. Lett. 96, 067205 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Xie, H., Pan, L., Cheng, X., Zhu, Z., Feng, H., Wang, J., Liu, Q.: Journal of Magnetism and Magnetic Materials.  https://doi.org/10.1016/j.jmmm.2018.04.046 (2018)
  30. 30.
    Buda, L.D., Prejbeanu, I.L., Demand, M., Ebels, U., Ounadjela, K.: IEEE Trans. Magn. 37, 2061–2063 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Ivanov, B.A., Zaspel, C.E.: Appl. Phys. lett. 81(7), 1261 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Li, J., Wang, Y., Cao, J., Meng, X., Zhu, F., Tai, R.: J. Magn. Magn. Mater. 451, 379–384 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Fattouhi
    • 1
  • M. Y. El Hafidi
    • 1
  • M. El Hafidi
    • 1
    Email author
  • A. Kassiba
    • 2
  • N. Yaacoub
    • 2
  1. 1.Condensed Matter Physics Laboratory, Faculty of Science Ben M’sikHassan II University of CasablancaCasablancaMorocco
  2. 2.IMMM-UMR CNRS 6283Université du Maine Avenue Olivier MessiaenLe Mans Cedex 9France

Personalised recommendations