Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 219–228 | Cite as

Theoretical Model Study of Interplay of Coulomb Interaction and Electron-Phonon Interaction in the Thermal Properties of Monolayer Graphene

  • Sivabrata Sahu
  • G. C. RoutEmail author
Original Paper
  • 62 Downloads

Abstract

We propose here a tight-binding (TB) model Hamiltonian for monolayer graphene-on-substrate describing the nearest-neighbor-hopping, on-site Coulomb interaction on the sub-lattices and the electron-phonon interaction under the high-frequency limit of phonon vibration. Applying Lang-Firsov canonical transformation, the electron and phonon systems are decoupled in the atomic Hamiltonian, such that the effective Coulomb interaction and effective nearest-neighbor-hopping integral respectively appear as \(\tilde {U}=U-2t_{1}\lambda \) and \(\tilde {t}_{1}=t_{1}e^{\frac {-t_{1}\lambda } {\omega _{0}}}\), where U, t1, λ and ω0 are respectively Coulomb energy, nearest-neighbor-hopping integral, electron-phonon (e-ph) coupling and phonon frequency. The effective Coulomb interaction in the Hamiltonian is considered within mean-field approximation. The Hamiltonian is solved by Zubarev’s Green’s function technique. The temperature-dependent electronic entropy and specific heat are calculated from the free energy of graphene system and are computed numerically. The temperature-dependent electronic specific heat exhibits a charge gap peak at room temperature arising due to the effect of Coulomb interaction and electron-phonon interaction. The evolution of these peaks in specific heat is investigated by varying the model parameters of the system.

Keywords

Graphene Coulomb potential Electron-phonon interaction Specific heat 

Notes

Funding Information

This work is supported by the Centre of Excellence for Novel Energy Materials (CENEMA) under the Ministry of Human Resources Development of India and School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, India.

References

  1. 1.
    Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).  https://doi.org/10.1016/j.ssc.2008.02.024 ADSCrossRefGoogle Scholar
  2. 2.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Sci. (80-.) 321, 385–388 (2008).  https://doi.org/10.1126/science.1157996 ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, Y., Tan, Y.W.Y.-W.W., Stormer, H.L.H.L.H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).  https://doi.org/10.1038/nature04235 ADSCrossRefGoogle Scholar
  4. 4.
    Schabel, M.C., Martins, J.L.: Energetics of interplanar binding in graphite. Phys. Rev. B. 46, 7185–7188 (1992).  https://doi.org/10.1103/PhysRevB.46.7185 ADSCrossRefGoogle Scholar
  5. 5.
    Bullett, D.W.: Angular forces and valence force field in C and Si. J. Phys. C Solid State Phys. 8, 3108–3114 (1975).  https://doi.org/10.1088/0022-3719/8/19/010 ADSCrossRefGoogle Scholar
  6. 6.
    Verma, R., Member, S., Bhattacharya, S.: Thermoelectric performance of a single-layer graphene sheet for energy harvesting. ieeexplore.ieee.org. 60, 2064–2070 (2013)Google Scholar
  7. 7.
    Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).  https://doi.org/10.1063/1.2907977 ADSCrossRefGoogle Scholar
  8. 8.
    Li, J., Wierzbowski, J., Ceylan, Ö., Klein, J., Nisic, F., Le Anh, T., Meggendorfer, F., Palma, C.A., Dragonetti, C., Barth, J.V., Finley, J.J., Margapoti, E.: Tuning the optical emission of MoS2 nanosheets using proximal photoswitchable azobenzene molecules. Appl. Phys. Lett. 105, 241116 (2014).  https://doi.org/10.1063/1.4904824 ADSCrossRefGoogle Scholar
  9. 9.
    Balasubramanian, G., Puri, I.K., Böhm, M. C., Leroy, F.: Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations. Nanoscale 3, 3714 (2011).  https://doi.org/10.1039/c1nr10421g ADSCrossRefGoogle Scholar
  10. 10.
    Azadeh, M.S.S., Kokabi, A., Hosseini, M., Fardmanesh, M.: Tunable bandgap opening in the proposed structure of silicon doped graphene. IET. 4 (2011).  https://doi.org/10.1049/mnl.2011.0195
  11. 11.
    Mortazavi, B., Rajabpour, A., Ahzi, S., Rmond, Y., Mehdi Vaez Allaei, S.: Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun. 152, 261–264 (2012).  https://doi.org/10.1016/j.ssc.2011.11.035 ADSCrossRefGoogle Scholar
  12. 12.
    Tohei, T., Kuwabara, A., Oba, F., Tanaka, I.: Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B - Condens. Matter Mater. Phys. 73, 64304 (2006).  https://doi.org/10.1103/PhysRevB.73.064304 ADSCrossRefGoogle Scholar
  13. 13.
    Nicklow, R., Wakabayashi, N., Smith, H.G.: Lattice dynamics of pyrolytic graphite. Phys. Rev. B. 5, 4951–4962 (1972).  https://doi.org/10.1103/PhysRevB.5.4951 ADSCrossRefGoogle Scholar
  14. 14.
    Ramezanali, M.R., Vazifeh, M.M., Asgari, R., Polini, M., MacDonald, A.H.: Finite-temperature screening and the specific heat of doped graphene sheets. J. Phys. A Math. Theor. 42, 214015 (2008).  https://doi.org/10.1088/1751-8113/42/21/214015 ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Burmistrov, I.S., Gornyi, I.V., Kachorovskii, V.Y., Katsnelson, M.I., Mirlin, A.D.: Quantum elasticity of graphene: thermal expansion coefficient and specific heat. Phys. Rev. B. 94, 195430 (2016).  https://doi.org/10.1103/PhysRevB.94.195430 ADSCrossRefGoogle Scholar
  16. 16.
    Alisultanov, Z.Z., Reis, M.S.: Magneto-oscillations on specific heat of graphene monolayer. Phys. Lett. A. 380, 470–474 (2016).  https://doi.org/10.1016/j.physleta.2015.10.046 ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Falkovsky, L.A.A.: Thermodynamics of electron-hole liquids in graphene. JETP Lett. 98, 161–164 (2013).  https://doi.org/10.1134/S0021364013160042 ADSCrossRefGoogle Scholar
  18. 18.
    Sahu, S., Parashar, S.K.S., Rout, G.C.: Model study of band gap opening in graphene by electron–electron and electron–phonon interaction in high frequency range. Adv. Sci. Lett. 22, 331–335 (2016).  https://doi.org/10.1166/asl.2016.6894 CrossRefGoogle Scholar
  19. 19.
    Sahu, S., Rout, G.C.: A theoretical model study on interplay between Coulomb potential and lattice energy in graphene-on-substrate. Int. J. Comput. Mater. Sci. Eng. 6, 1750011 (2017).  https://doi.org/10.1142/S2047684117500117 Google Scholar
  20. 20.
    Hubbard, J.: Electron correlations in narrow energy bands. Proc. R. Soc. A Math. Phys. Eng. Sci. 276, 238–257 (1963).  https://doi.org/10.1098/rspa.1963.0204 ADSGoogle Scholar
  21. 21.
    Lang, I.G., Firsov, Y.: A: Kinetic theory of semiconductors with low mobility. Sov. J. Exp. Theor. Phys. 16, 1301–1312 (1963)ADSzbMATHGoogle Scholar
  22. 22.
    Zubarev, D.N.: Double-time green functions in statistical physics. Sov. Phys. Uspekhi. 3, 320–345 (1960).  https://doi.org/10.1070/PU1960v003n03ABEH003275 ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Los, J.H., Zakharchenko, K.V., Katsnelson, M.I., Fasolino, A.: Melting temperature of graphene. Phys. Rev. B. 91, 45415 (2015).  https://doi.org/10.1103/PhysRevB.91.045415 ADSCrossRefGoogle Scholar
  24. 24.
    Dresselhaus, M.S., Jorio, A., Souza Filho, A.G., Saito, R.: Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5355–5377 (2010).  https://doi.org/10.1098/rsta.2010.0213 ADSCrossRefGoogle Scholar
  25. 25.
    Mazzola, F., Frederiksen, T., Balasubramanian, T., Hofmann, P., Hellsing, B., Wells, J.W.: Strong electron-phonon coupling in the σ band of graphene. Phys. Rev. B. 95, 75430 (2017).  https://doi.org/10.1103/PhysRevB.95.075430 ADSCrossRefGoogle Scholar
  26. 26.
    Mazzola, F., Wells, J.W., Yakimova, R., Ulstrup, S., Miwa, J.A., Balog, R., Bianchi, M., Leandersson, M., Adell, J., Hofmann, P., Balasubramanian, T.: Kinks in the σ band of graphene induced by electron-phonon coupling. Phys. Rev. Lett. 111, 216806 (2013).  https://doi.org/10.1103/PhysRevLett.111.216806 ADSCrossRefGoogle Scholar
  27. 27.
    Johannsen, J.C., Ulstrup, S., Bianchi, M., Hatch, R., Guan, D., Mazzola, F., Hornekær, L., Fromm, F., Raidel, C., Seyller, T., Hofmann, P.: Electron-phonon coupling in quasi-free-standing graphene. J. Phys. Condens. Matter. 25, 94001 (2013).  https://doi.org/10.1088/0953-8984/25/9/094001 CrossRefGoogle Scholar
  28. 28.
    Forti, S., Emtsev, K.V., Coletti, C., Zakharov, A.A., Riedl, C., Starke, U.: Large-area homogeneous quasifree standing epitaxial graphene on SiC(0001): electronic and structural characterization. Phys. Rev. B - Condens. Matter Mater. Phys. 84, 125449 (2011).  https://doi.org/10.1103/PhysRevB.84.125449 ADSCrossRefGoogle Scholar
  29. 29.
    Ulstrup, S., Bianchi, M., Hatch, R., Guan, D., Baraldi, A., Alfè, D., Hornekær, L., Hofmann, P.: High-temperature behavior of supported graphene: electron-phonon coupling and substrate-induced doping. Phys. Rev. B - Condens. Matter Mater. Phys. 86, 161402 (2012).  https://doi.org/10.1103/PhysRevB.86.161402 ADSCrossRefGoogle Scholar
  30. 30.
    Nihira, T., Iwata, T.: Temperature dependence of lattice vibrations and analysis of the specific heat of graphite. Phys. Rev. B. 68, 134305 (2003).  https://doi.org/10.1103/PhysRevB.68.134305 ADSCrossRefGoogle Scholar
  31. 31.
    Fried, L., Howard, W.: Explicit Gibbs free energy equation of state applied to the carbon phase diagram. Phys. Rev. B. 61, 8734–8743 (2000).  https://doi.org/10.1103/PhysRevB.61.8734 ADSCrossRefGoogle Scholar
  32. 32.
    Peres, N.M.R., Araújo, M. A. N., Bozi, D.: Phase diagram and magnetic collective excitations of the Hubbard model for graphene sheets and layers. Phys. Rev. B - Condens. Matter Mater. Phys. 70, 1–12 (2004).  https://doi.org/10.1103/PhysRevB.70.195122 CrossRefGoogle Scholar
  33. 33.
    Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., Van Den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B - Condens. Matter Mater. Phys. 76, 73103 (2007).  https://doi.org/10.1103/PhysRevB.76.073103 ADSCrossRefGoogle Scholar
  34. 34.
    Enderlein, C., Kim, Y.S., Bostwick, A., Rotenberg, E., Horn, K.: The formation of an energy gap in graphene on ruthenium by controlling the interface. J. Phys. 12, 33014 (2010).  https://doi.org/10.1088/1367-2630/12/3/033014 Google Scholar
  35. 35.
    Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., De Heer, W.A., Lee, D.H., Guinea, F., Castro Neto, A.H., Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770–775 (2007).  https://doi.org/10.1038/nmat2003 ADSCrossRefGoogle Scholar
  36. 36.
    Sahu, S., Rout, G.C.: Model study of the effect of Coulomb interaction on band gap of graphene-on-substrates. Phys. B Condens. Matter. 461, 49–56 (2015).  https://doi.org/10.1016/j.physb.2014.12.014 ADSCrossRefGoogle Scholar
  37. 37.
    Sahu, S., Rout, G.C.: Tight-binding model study of substrate induced pseudo-spin polarization and magnetism in mono-layer graphene. J. Magn. Magn. Mater. 1–10 (2015).  https://doi.org/10.1016/j.jmmm.2016.01.062

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre of Excellence for Novel Energy Material (CENEMA), School of Basic SciencesIndian Institute of Technology BhubaneswarBhubaneswarIndia
  2. 2.Condensed Matter Physics Group, Physics EnclaveBhubaneswarIndia

Personalised recommendations