Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 325–333 | Cite as

Infrared Spectroscopic Study of Magnetic Behavior of Dysprosium Doped Magnetite Nanoparticles

  • Richa Jain
  • Vandna Luthra
  • Manju Arora
  • Shubha GokhaleEmail author
Original Paper


Dysprosium doped magnetite (Fe3−xDyxO4 with x = 0.0–0.1) nanoparticles have been synthesized using the co-precipitation method. Magnetic characterization using vibrating sample magnetometer (VSM) has revealed an enhancement in the saturation magnetization with Dy3+ doping. The occupancy of the dopant ions in magnetite lattice has been probed using Fourier transform infrared spectroscopy (FTIR). The shifting of ν2 (Fe–O) band at 452 cm− 1 for undoped samples to 443 cm− 1 for dysprosium-doped samples is indicative of occupancy of dysprosium at the octahedral site. X-ray diffraction (XRD) patterns have been used to calculate the strain and lattice constant. The strain is found to increase with doping level and attained a maximum value for the x = 0.03. This increase in the strain can be attributed to occupancy of large diameter Dy3+ ions at the octahedral site of spinel structure of the magnetite lattice.


Magnetite Dysprosium Rare earth doping Infrared spectroscopy XRD 



The authors thank USIC, Delhi University for facilitating the FTIR measurements. The authors acknowledge the Indian Institute of Technology, New Delhi for XRD characterization. The authors thank Prof. Annapoorni, Delhi University, Delhi for facilitating the VSM measurements. The TEM characterization was carried out at the Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi. Authors are thankful to Dr. Gajender Saini for the help rendered in SAED analysis.


  1. 1.
    Bird, S.M., Galloway, J.M., Rawlings, A.E., Bramblea, J.P., Staniland, S.S.: Taking a hard line with biotemplating: cobalt doped magnetite magnetic nanoparticle arrays. Nanoscale 7, 7340–7351 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, Y.: One-dimensional nanostructure: synthesis, characterization and application. Adv. Mater. 15, 353–389 (2003)CrossRefGoogle Scholar
  3. 3.
    Alcantara, D., Lopez, S., García-Martin, M.L., Pozo, D.: Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: current applications in nanomedicine. Nanomed.: Nanotechnol. Biol. Med. 12, 1253–1262 (2016)CrossRefGoogle Scholar
  4. 4.
    Jamshaid, T., Taveira Tenório Neto, E., Eissa, M.M., Zine, N., Hiroiuqui Kunita, M., El-Salhi, A.E., Elaissari, A.: Magnetic particles: from preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. Trends Anal. Chem. 79, 344–362 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhao, Z., Chi, X., Yang, L., Yang, R., Ren, B.W., Zhu, X., Zhang, P., Gao, J.: Cation exchange of anisotropic-shaped magnetite nanoparticles generates highrelaxivity contrast agents for liver tumor imaging. Chem. Mater. 28, 3497–3506 (2016)CrossRefGoogle Scholar
  6. 6.
    Chowdhuri, A.R., Bhattacharya, D., Sahu, S.K.: Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and MRI contrast agent. Dalton Trans. 45, 2963–2973 (2016)CrossRefGoogle Scholar
  7. 7.
    Zhang, H., Malik, V., Mallapragada, S., Akinc, M.: Synthesis and characterization of Gd-doped magnetite nanoparticles. J. Magn. Magn. Mater. 423, 386–394 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Rice, K.P., Russek, S.E., Geiss, R.H., Shaw, J.M., Usselman, R.J., Evarts, E.R., Silva, T.J., Nembach, H.T., Arenholz, E., Idzerda, Y.U.: Temperature dependent structure of Tb-doped magnetite nanoparticles. Appl. Phys. Lett. 106, 0624091-4 (2015)CrossRefGoogle Scholar
  9. 9.
    Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New Delhi (1995)Google Scholar
  10. 10.
    Kulkarni, S.K.: Nanotechnology: Principles and Practices, 2nd edn. Capital Publishing Company, New Delhi (2011)Google Scholar
  11. 11.
    Aghazadeh, M., Ganjali, M.R.: Evaluation of supercapacitive and magnetic properties of Fe3O4 nano-particles electrochemically doped with dysprosium cations: development of a novel iron-based electrode. Ceram. Int. 44, 520–529 (2018)CrossRefGoogle Scholar
  12. 12.
    Shi, J., Tong, L., Ren, X., Li, Q., Yang, H.: Multifuctional Fe3O4@C/YVO4:Dy3+ nanopowers: preparation, luminescence and magnetic properties. Ceram. Int. 39, 6391–6397 (2013)CrossRefGoogle Scholar
  13. 13.
    Huan, W., Ji, G., Cheng, C., An, J., Yang, Y., Liu, X.: Preparation, characterization of high-luminescent and magnetic Eu3+, Dy3+ doped superparamagnetic nano-Fe3O4. J. Nanosci. Nanotechnol. 14, 1–9 (2014)CrossRefGoogle Scholar
  14. 14.
    Jain, R., Luthra, V., Gokhale, S.: Dysprosium doping induced shape and magnetic anisotropy of Fe3−xDyxO4 (x = 0.01–0.1) nanoparticles. J. Magn. Magn. Mater. 414, 111–115 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Chandra, S., Das, R., Kalappattil, V., Eggers, T., Harnagea, C., Nechache, R., Phan, M.-H., Rosei, F., Srikanth, H.: Epitaxial magnetite nanorods with enhanced room temperature magnetic anisotropy. Nanoscale 9, 7858–7867 (2017)CrossRefGoogle Scholar
  16. 16.
    Sharma, R., Singhal, S.: Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue. Physica B 414, 83–90 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Caruntu, D., Caruntu, G., O’Connor, C.J.: Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyol. J. Phys. D: Appl. Phys. 40, 5801–5809 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Gadkari, A., Shinde, T., Vasambekar, P.: Influence of rare-earth ions on structural and magnetic properties of CdFe2O4. Rare Met. 29, 168–173 (2010)CrossRefGoogle Scholar
  19. 19.
    Rana, S., Philip, J., Raj, B.: Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry. Mater. Chem. Phys. 124, 264–269 (2010)CrossRefGoogle Scholar
  20. 20.
    Karamipour, S., Sadjadi, M.S., Farhadyar, N.: Fabrication and spectroscopic studies of folic acid conjugated Fe3O4@Au core–shell for targeted drug delivery application. Spectrochim. Acta Mol. Biomol. Spectrosc. 148, 146–155 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Gasparov, L.V., Tanner, D.B., Romero, D.B., Margaritondo, H. Berger G., Forro, L.: Infrared and Raman studies of the Verwey transition in magnetite. Phys. Rev. B 62, 7939–7944 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Wolska, E., Piszora, P., Nowicki, W., Darul, J.: Vibrational spectra of lithium ferrites: infrared spectroscopic studies of Mn-substituted LiFe5O8. Int. J. Inorg. Mater. 3, 503–507 (2001)CrossRefGoogle Scholar
  23. 23.
    Giri, J., Bahadur, T., Sriharsha, D.: Optimization of parameters for the synthesis of nano-sized Co1−xZnxFe2O4, (0 ≤ x ≤ 0.8) by microwave refluxing. Mater. Chem. 14, 875–880 (2004)CrossRefGoogle Scholar
  24. 24.
    Tan, X., Fang, M., Chen, C., Yu, S., Wang, X.: Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution. Carbon 46, 1741–1750 (2008)CrossRefGoogle Scholar
  25. 25.
    Zhao, F., Zhang, B., Feng, L.: Preparation and magnetic properties of magnetite nanoparticles. Mater. Lett. 68, 112–114 (2012)CrossRefGoogle Scholar
  26. 26.
    Sudakar, C., Subbanna, G.N., Narayanan Kutty, T.R.: Synthesis of acicular hydrogoethite (α-FeOOH⋅ x H2O; 0.1 < x < 0.22) particles using morphology controlling cationic additives and magnetic properties of maghemite derived from hydrogoethite. J. Mater. Chem. 12, 107–116 (2002)CrossRefGoogle Scholar
  27. 27.
    Pawar, R.A., Patange, S.M., Tamboli, Q.Y., Ramanathan, V., Shirsath, S.E.: Spectroscopic, elastic and dielectric properties of Ho3+ substituted Co-Zn ferrites synthesized by sol-gel method. Ceram. Int. 42, 16096–16102 (2016)CrossRefGoogle Scholar
  28. 28.
    Shirsath, S.E., Mane, M.L., Yasukawa, Y., Liu, X., Morisako, A.: Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+-Mn2+-Fe3+-O2− ferromagnetic nanoparticles. Phys. Chem. Chem. Phys. 16, 2347–2357 (2014)CrossRefGoogle Scholar
  29. 29.
    Amiri, S., Shokrollahi, H.: Magnetic and structural properties of RE doped Co-ferrite (RE=Nd, Eu, Gd) nanoparticles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Ma, M., Zhang, Y., Yu, W., Shen, H.-Y., Zhang, H.-Q., Gu, N.: Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf. A Physicochem. Eng. Asp. 212, 219–226 (2003)CrossRefGoogle Scholar
  31. 31.
    Iyengar, S.J., Joy, M., Ghosh, C.K., Dey, S., Kotnala, R.K., Ghosh, S.: Magnetic, X-ray and Mössbauer studies on magnetite/maghemite core–shell nanostructures fabricated through an aqueous route. RSC Adv. 4, 64919–64929 (2014)CrossRefGoogle Scholar
  32. 32.
    Kambale, R.C., Song, K.M., Koo, Y.S., Hur, N.: Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110, 0539101-7 (2011)CrossRefGoogle Scholar
  33. 33.
    Padalia, D., Johri, U.C., Zaidi, M.G.H.: Effect of cerium substitution on structural and magnetic properties of magnetite nanoparticles. Mater. Chem. Phys. 169, 89–95 (2016)CrossRefGoogle Scholar
  34. 34.
    Ibrahim Dar, M., Shivashankar, S.A.: Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity. RSC Adv. 4, 4105–4113 (2014)CrossRefGoogle Scholar
  35. 35.
    Prathapani, S., Vinitha, M., Jayaraman, T.V., Das, D.: Effect of Er doping on the structural and magnetic properties of cobalt-ferrite. J. Appl. Phys. 115, 17A502 (2014)CrossRefGoogle Scholar
  36. 36.
    Zhao, X., Wang, W., Zhang, Y., Wu, S., Li, F., Liu, J.P.: Synthesis and characterization of gadolinium doped Cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red. Chem. Eng. J. 250, 164–174 (2014)CrossRefGoogle Scholar
  37. 37.
    Anita, Luthra, V.: Tweaking electrical and magnetic properties of Al–Ni co-doped ZnO Nanopowders. Ceram. Int. 40, 14927–14932 (2014)CrossRefGoogle Scholar
  38. 38.
    Anjum, S., Tufail, R., Saleem, H., Zia, R., Riaz, S.: Investigation of stability and magnetic properties of Ni- and Co-doped iron oxide nano-particles. J. Supercond. Nov. Magn. 30, 2291–2301 (2017)CrossRefGoogle Scholar
  39. 39.
    Anjum, S., Saleem, H., Rasheed, K., Zia, R., Riaz, S., Usman, A.: Role of Ni2+ ions in magnetite nano-particles synthesized by co-precipitation method. J. Supercond. Nov. Magn. 30, 1177–1186 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of SciencesIndira Gandhi National Open UniversityNew DelhiIndia
  2. 2.Department of PhysicsGargi CollegeNew DelhiIndia
  3. 3.CSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations