Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 319–324 | Cite as

Structural, Magnetic and Magnetocaloric Properties of High-Energy Ball-Milled Gd5Si2Ge2B0.05 Alloy

  • N. Pavan Kumar
  • K. Prabahar
  • D. M. Raj Kumar
  • M. Manivel RajaEmail author
Original Paper


Structural, magnetic and magnetocaloric properties of Gd5Si2Ge2B0.05 alloy, ball milled for different time intervals in the range of 2–50 h were studied. The x-ray powder diffraction analysis of the alloy prior to milling revealed the presence of mixed orthorhombic and monoclinic phases at room temperature. For a milling duration up to 15 h, the alloy powder displayed crystalline nature. Upon further milling, the alloy powder started to lose the crystallinity and after 50 h of milling, the alloy powder displayed amorphous nature. The average particle size of milled samples was found to decrease with increase in milling time. The saturation magnetization value of the bulk alloy 80 emu/g was found to decrease with increase in milling time due to structural disorder. The transition temperature of the milled alloy powder was found to be around 295 K and the transition was found to become broader with increase in milling time. A maximum isothermal entropy change (ΔSmax) of ∼12 J/kg K was obtained in bulk alloy. For a milling duration of 2 h, a marginal decrease of ΔSmax (∼11 J/kg K) was obtained. Whereas, for higher milling durations, (≥ 15 h) a significant decrease in ΔSmax values were observed. However, the broad operating temperature range of the milled powders can be exploited for magnetic refrigeration applications.


Gd–Si–Ge alloys Structural and magnetic transitions Magnetocaloric effect 



First author Dr. N. Pavan Kumar thanks DST-SERB for sanctioning a project under Young Scientist Scheme (File No. YSS/2015/000977).


  1. 1.
    Gschneidner, K.A. Jr., Pecharsky, V.K., Tsokol, A.O.: Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Sahlot, M., Riffat, S.B.: Int. J Low-Carbon Tech. 11, 489 (2016)Google Scholar
  3. 3.
    Pecharsky, V.K., Gschneidner, K.A. Jr: Phys. Rev. Lett. 78, 4494 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Pecharsky, V.K., Gschneidner, K.A. Jr: Appl. Phys. Lett. 70, 3299 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Beckmann, O., Lundgren, L.: Hand book of magnetic materials vol 6, (1991) 181 ed K H J Buschow (Amsterdam)Google Scholar
  6. 6.
    Bruck, E., Tegus, O., Li, X.W., de Boer, F.R., Buschow K.H.J.: Physica B: Condens. Matter 327, 431 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Tegus, O., Bruck, E., Zhang, L., Dagula, B.K.H.J., de Boer, F.R.: Physica B: Condens. Matter 319, 174 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K.: Phys. Rev. B 67(2003), 104416 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Hu, F.X., Shen, B.G., Sun, J.R., Cheng, Z.H., Rao, G.H., Zhang, X.X.: Appl. Phys. Lett. 78, 3675 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Krenke, T., Duman, E., Acet, M., Wassermann, E., Moya, X., Manosa, L., Planes, A.: Nat. Mater. 4, 450 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Pakhomov, A.B., Wong, C.Y., Zhang, X.X., Wen, G.H., Wu, G.H.: IEEE Trans. Magn. 37, 2718 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Benford, S.M.: J. Appl. Phys. 50, 1868 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    Gschneidner, V.K., Pecharskyand, K.A.: J. Appl. Phys. 90, 4614 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Provenzano, V., Shapiro, A.J., Shull, R.D.: Nature 429, 853 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Prabahar, K., PavanKumar, N., Raj Kumar, D.M., Arumugam, S., Manivel Raja, M.: Intermetallics 96, 18 (2018)CrossRefGoogle Scholar
  16. 16.
    Pecharsky, A.O., Gschneidner, K.A. Jr, Pecharsky, V.K.: J. Appl. Phys. 93, 4722 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Barsan, V., Lungu, R.P.: Trends in electromagnetism—from fundamentals to applications. ISBN 978-953-51-0267-0 (2012)Google Scholar
  18. 18.
    Rajkumar, D.M., Manivel Raja, M., Gopalan, R., Chandrasekaran, V.: J. Mag. Mag. Mat. 320, 1479 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Suryanarayana, C.: Prog. Mater. Sci. 46, 1 (2001)CrossRefGoogle Scholar
  20. 20.
    Zhang, T.B., Provenzano, V., Chen, Y.G., Shull, R.D.: Solid State Commn. 147, 107 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Bashar, I., Obaidat, I.M., Albiss, B.A., Haik, Y.: Int. J. Mol. Sci. 14, 21266 (2013)CrossRefGoogle Scholar
  22. 22.
    Levin, E.M., Pecharsky, V.K., Gschneidner, K.A. Jr: Phys. Rev. B62, R14625 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Haskel, D., Lee, Y.B., Harmon, B.N., Islam, Z., Lang, J.C., Srajer, G., Mudryk, Y., Gschneidner, J.K.A., Pecharsky, V.K.: Phys. Rev. Lett. 98, 247205 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    doCouto, G.G., Svitlyk, V., Jafelicci, M. Jr, Mozharivskyj, Y.: Solid State Sci. 13, 209 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Pavan Kumar
    • 1
  • K. Prabahar
    • 1
  • D. M. Raj Kumar
    • 1
  • M. Manivel Raja
    • 1
    Email author
  1. 1.Defence Metallurgical Research LaboratoryHyderabadIndia

Personalised recommendations