Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 341–351 | Cite as

Preparation and Thermophysical Investigations of CoFe2O4-based Nanofluid: a Potential Heat Transfer Agent

  • Prashant B. KharatEmail author
  • Jitendra S. Kounsalye
  • Mahendra V. Shisode
  • K. M. Jadhav
Original Paper


Cobalt ferrite nanoparticles were synthesized by employing chemical co-precipitation technique. The structure, morphology, elemental composition, and magnetization studies of cobalt ferrite nanoparticles were carried by XRD, FE-SEM, EDS, and VSM techniques, respectively. Rietveld refined XRD pattern exhibited the single-phase cubic spinel structure with Fd-3m space group. FE-SEM images indicated some agglomeration of spherical grains which can be attributed to high surface energy and magnetic interactions. Presence of peaks of respective elements (Co, Fe, and O) in EDS spectrum showed formation of CoFe2O4. The M–H loop recorded at 300 K revealed superparamagnetic behavior and explained by fine particles size. The blocking temperature of the CoFe2O4nanoparticles from FC-ZFC curve was found to be 144 K. Cobalt ferrite–ethylene glycol nanofluids of various concentrations 0.0–1.0% in steps of 0.2% were prepared by ultrasonically assisted two-step technique. Thermophysical parameters such as thermal conductivity, specific heat, viscosity, and density were investigated as a function of both volume fraction and temperature. The experimental and theoretical value of each sample was correlated. The thermal conductivity was significantly enhanced with an increase in volume fraction and temperature.


CoFe2O4 nanoparticles Nanofluids Ethylene glycol Volume fraction Temperature 



Volume fraction (%)


Wavelength of x-ray (Å)


Goodness of fit


Lattice constant (Å)


Density (kg/m3)


Specific surface area (m2/g)


Blocking temperature (K)


Saturation magnetization (emu/gm)


Remanence magnetization (emu/gm)


Coercivity (Oe)


Magneton number


Thermal conductivity (W/mK)


Specific heat (J/(kg K))


Viscosity (cP)


Rp, Rwp

Profile Reliability Index, Weighted Profile Reliability Index









The authors are thankful to Professor John Philip, Indira Gandhi Center for Atomic Research Center, Kalpakkam, Tamilnadu, as well as Professor J. B. Naik, Head, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, Maharashtra, for providing thermal conductivity and specific heat measurement facilities.


  1. 1.
    Shima, P., Philip, J.: Tuning of thermal conductivity and rheology of nanofluids using an external stimulus. J. Phys. Chem. C 115, 20097–20104 (2011)CrossRefGoogle Scholar
  2. 2.
    Rashin, M.N., Hemalatha, J.: A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids. J. Mol. Liq. 197, 257–262 (2014)CrossRefGoogle Scholar
  3. 3.
    Ashraf, M.W., Tayyaba, S., Afzulpurkar, N.: Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int. J. Mol. Sci. 12, 3648–3704 (2011)CrossRefGoogle Scholar
  4. 4.
    Saidur, R., Leong, K., Mohammad, H.: A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)CrossRefGoogle Scholar
  5. 5.
    Philip, J., Jaykumar, T., Kalyanasundaram, P., Raj, B.: A tunable optical filter. Meas. Sci. Technol. 14, 1289 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Das, S.K., Choi, S.U., Yu, W., Pradeep, T.: Nanofluids: science and technology. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  7. 7.
    Hayat, T., Waqas, M., Shehzad, S., Alsaedi, A.: A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid. J. Mol. Liq. 215, 704–710 (2016)CrossRefGoogle Scholar
  8. 8.
    Kale, G., Humbe, A.V., Kharat, P., Bhoyar, D., Jadhav, K.: Tartaric acid a novel fuel approach: synthesis and characterization of CoFe2O4 nano particlesGoogle Scholar
  9. 9.
    Mahadik, M.M., Kharat, P.B.: Aliphatic organic compounds: a substitute of ferrite materials in isolator for high frequency applicationGoogle Scholar
  10. 10.
    Peyghambarzadeh, S., Hashemabadi, S., Hoseini, S., Jamnani, M.S.: Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators. Int. Commun. Heat Mass Transf. 38, 1283–1290 (2011)CrossRefGoogle Scholar
  11. 11.
    Zhang, X., Gu, H., Fujii, M.: Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp. Therm. Fluid Sci. 31, 593–599 (2007)CrossRefGoogle Scholar
  12. 12.
    Patel, H.E., Sundararajan, T., Das, S.K.: An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J. Nanoparticle Res. 12, 1015–1031 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Pastoriza-Gallego, M.J., Lugo, L., Legido, J.L., Piñeiro, M.M.: Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanoscale Res. Lett. 6, 221 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Pastoriza-Gallego, M.J., Lugo, L., Legido, J.L., Piñeiro, M.M.: Rheological non-Newtonian behaviour of ethylene glycol-based Fe 2 O 3 nanofluids. Nanoscale Res. Lett. 6, 560 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Zhu, H., Zhang, C., Liu, S., Tang, Y., Yin, Y.: Effects of nanoparticle clustering and alignment on thermal conductivities of Fe 3 O 4 aqueous nanofluids. Appl. Phys. Lett. 89, 023123 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Abareshi, M., Goharshadi, E.K., Zebarjad, S.M., Fadafan, H.K., Youssefi, A.: Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J. Magn. Magn. Mater. 322, 3895–3901 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Sundar, L.S., Singh, M.K., Sousa, A.C.: Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int. Commun. Heat Mass Transf. 44, 7–14 (2013)CrossRefGoogle Scholar
  18. 18.
    Sundar, L.S., Singh, M.K., Sousa, A.C.: Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Int. Commun. Heat Mass Transf. 49, 17–24 (2013)CrossRefGoogle Scholar
  19. 19.
    Bahiraei, M., Hangi, M.: An empirical study to develop temperature-dependent models for thermal conductivity and viscosity of water-Fe3O4 magnetic nanofluid. Mater. Chem. Phys. 181, 333–343 (2016)CrossRefGoogle Scholar
  20. 20.
    Bahiraei, M.: Effect of particle migration on flow and heat transfer characteristics of magnetic nanoparticle suspensions. J. Mol. Liq. 209, 531–538 (2015)CrossRefGoogle Scholar
  21. 21.
    Sheikholeslami, M., Hatami, M., Ganji, D.: Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. J. Mol. Liq. 190, 112–120 (2014)CrossRefGoogle Scholar
  22. 22.
    Mohebbi, A.: Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation. J. Mol. Liq. 175, 51–58 (2012)CrossRefGoogle Scholar
  23. 23.
    Kharat, P.B., Shisode, M., Birajdar, S., Bhoyar, D., Jadhav, K.: Synthesis and characterization of water based NiFe2O4 ferrofluid. In: AIP Conference Proceedings, p 050122. AIP Publishing (2017)Google Scholar
  24. 24.
    Kharat, P.B., Kounsalye, J.S., Humbe, A.V., Birajdar, S.D., Jadhav, K.: Preparation and diverse properties of cobalt ferrite ferrofluidGoogle Scholar
  25. 25.
    Kounsalye, J.S., Kharat, P.B., Chavan, A.R., Humbe, A.V., Borade, R., Jadhav, K.: Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0. 5Fe2. 5O4. In: AIP Conference Proceedings, p 050067. AIP Publishing (2018)Google Scholar
  26. 26.
    Kounsalye, J.S., Kharat, P.B., Bhoyar, D.N., Jadhav, K.: Radiation-induced modifications in structural, electrical and dielectric properties of Ti 4 + ions substituted Li 0.5 Fe 2.5 O 4 nanoparticles. J. Mater. Sci. Mater. Electron. 29(10):8601–8609Google Scholar
  27. 27.
    Kounsalye, J.S., Kharat, P.B., Shisode, M.V., Jadhav, K.: Influence of Ti4 + ion substitution on structural, electrical and dielectric properties of Li0. 5Fe2. 5O4 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 17254–17261 (2017)CrossRefGoogle Scholar
  28. 28.
    Chavan, A.R., Chilwar, R.R., Kharat, P.B., Jadhav, K.: Effect of annealing temperature on structural, morphological, optical and magnetic properties of NiFe2 O4 thin films. J. Supercond. Nov. Magn. (2018).
  29. 29.
    Humbe, A.V., Kharat, P.B., Nawle, A.C., Jadhav, K.: Nanocrystalline Ni 0.70- x Cu x Zn 0.30 Fe 2 O 4 with 0= x = 0.25 prepared by nitrate-citrate route: structure, morphology and electrical investigations. J. Mater. Sci. Mater. Electron. 29, 3467–3481 (2018)CrossRefGoogle Scholar
  30. 30.
    Alam, R.S., Moradi, M., Rostami, M., Nikmanesh, H., Moayedi, R., Bai, Y.: Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Shanmugavani, A., Selvan, R.K., Layek, S., Vasylechko, L., Sanjeeviraja, C.: Influence of pH and fuels on the combustion synthesis, structural, morphological, electrical and magnetic properties of CoFe2O4 nanoparticles. Mater. Res. Bull 71, 122–132 (2015)CrossRefGoogle Scholar
  32. 32.
    Humbe, A.V., Nawle, A.C., Shinde, A., Jadhav, K.: Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloys Compd. 691, 343–354 (2017)CrossRefGoogle Scholar
  33. 33.
    Obaidat, I.M., Issa, B., Haik, Y.: Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5, 63–89 (2015)CrossRefGoogle Scholar
  34. 34.
    Tumanski, S.: Handbook of magnetic measurements. CRC Press, Boca Raton (2016)Google Scholar
  35. 35.
    Yadav, R.: Synthesis and characterization of structural and magnetic properties of electrodeposited cobalt iron thin film. In: Indian Institute of Technology Hyderabad (2015)Google Scholar
  36. 36.
    Yu, G., Upadhyaya, P., Fan, Y., Alzate, J.G., Jiang, W., Wong, K.L., Takei, S., Bender, S.A., Chang, L.-T., Jiang, Y.: Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Srdić, V.V., Cvejić, Z., Milanović, M., Stojanović, G., Rakić, S.: Metal oxide structure, crystal chemistry, and magnetic properties. In: Magnetic, Ferroelectric, and Multiferroic Metal Oxides, pp 313–332. Elsevier (2018)Google Scholar
  38. 38.
    Kolen’ko, Y.V., Banñobre-Loópez, M., Rodríguez-abreu, C., Carboó-Argibay, E., Sailsman, A., Pinñeiro-Redondo, Y., Cerqueira, M.F., Petrovykh, D.Y., Kovnir, K., Lebedev, O.I.: Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J. Phys. Chem. C 118, 8691–8701 (2014)CrossRefGoogle Scholar
  39. 39.
    Gonçalves, E., Cornejo, D., Oliveira, C., Neto, A.F., Depeyrot, J., Tourinho, F., Aquino, R.: Magnetic and structural study of electric double-layered ferrofluid with MnFe 2 O 4@ γ − Fe 2 O 3 nanoparticles of different mean diameters: determination of the magnetic correlation distance. Phys. Rev. E 91, 042317 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Sharma, S.K.: Exchange bias: from thin film to nanogranular and bulk systems. CRC Press, Boca Raton (2017)CrossRefGoogle Scholar
  41. 41.
    Zhang, S., Zhao, D.: Advances in magnetic materials: processing, properties, and performance. CRC Press, Boca Raton (2017)CrossRefGoogle Scholar
  42. 42.
    Gharibshahian, M., Mirzaee, O., Nourbakhsh, M.: Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method. J. Magn. Magn. Mater. 425, 48–56 (2017)CrossRefGoogle Scholar
  43. 43.
    Humbe, A.V., Kounsalye, J.S., Shisode, M.V., Jadhav, K.: Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni 0.70-x Cu x Zn 0.30 Fe 2 O 4 spinel ferrite, Ceramics International (2017)Google Scholar
  44. 44.
    Khot, V., Salunkhe, A., Ruso, J., Pawar, S.: Improved magnetic induction heating of nanoferrites for hyperthermia applications: correlation with colloidal stability and magneto-structural properties. J. Magn. Magn. Mater. 384, 335–343 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    Kandasamy, G., Maity, D.: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496, 191–218 (2015)CrossRefGoogle Scholar
  46. 46.
    Khot, V., Salunkhe, A., Thorat, N., Ningthoujam, R., Pawar, S.: Induction heating studies of dextran coated MgFe 2 O 4 nanoparticles for magnetic hyperthermia. Dalton Trans. 42, 1249–1258 (2013)CrossRefGoogle Scholar
  47. 47.
    Koksharov, Y.A.: Magnetism of nanoparticles: effects of size, shape, and interactions. Magnetic nanoparticles:2011 (2009)Google Scholar
  48. 48.
    Salunkhe, A., Khot, V., Phadatare, M., Thorat, N., Joshi, R., Yadav, H., Pawar, S.: Low temperature combustion synthesis and magnetostructural properties of Co–Mn nanoferrites. J. Magn. Magn. Mater. 352, 91–98 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Leufke, P.M.: Magnetoelectric coupling in layered LSMO/PZT nanostructures, In: Technische universität (2014)Google Scholar
  50. 50.
    Nikam, D., Jadhav, S., Khot, V., Phadatare, M., Pawar, S.: Study of AC magnetic heating characteristics of Co0. 5Zn0. 5Fe2O4 nanoparticles for magnetic hyperthermia therapy. J. Magn. Magn. Mater. 349, 208–213 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Rosensweig, R.E.: Ferrohydrodynamics, Courier Corporation (2013)Google Scholar
  52. 52.
    Bhuiya, A.W.: Temperature-induced phenomena in systems of magnetic nanoparticles. The University of Texas at El Paso (2009)Google Scholar
  53. 53.
    Issa, B., Obaidat, I.M., Albiss, B.A., Haik, Y.: Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14, 21266–21305 (2013)CrossRefGoogle Scholar
  54. 54.
    Evans, M., Heller, F.: Environmental magnetism: principles and applications of enviromagnetics. Academic Press, Cambridge (2003)Google Scholar
  55. 55.
    Manimaran, R., Palaniradja, K., Alagumurthi, N., Sendhilnathan, S., Hussain, J.: Preparation and characterization of copper oxide nanofluid for heat transfer applications. Appl. Nanosci. 4, 163–167 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    Paul, G., Chopkar, M., Manna, I., Das, P.: Techniques for measuring the thermal conductivity of nanofluids: a review. Renew. Sustain. Energy Rev. 14, 1913–1924 (2010)CrossRefGoogle Scholar
  57. 57.
    Leong, K., Ahmad, K.K., Ong, H.C., Ghazali, M., Baharum, A.: Synthesis and thermal conductivity characteristic of hybrid nanofluids–a review. Renew. Sustain. Energy Rev. 75, 868–878 (2017)CrossRefGoogle Scholar
  58. 58.
    Yu, W., Xie, H.: A review on nanofluids: preparation, stability mechanisms, and applications. J. Nanomater. 2012, 1 (2012)Google Scholar
  59. 59.
    Karthikeyan, N., Philip, J., Raj, B.: Effect of clustering on the thermal conductivity of nanofluids. Mater. Chem. Phys. 109, 50–55 (2008)CrossRefGoogle Scholar
  60. 60.
    Afrand, M.: Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl. Therm. Eng. 110, 1111–1119 (2017)CrossRefGoogle Scholar
  61. 61.
    Toghraie, D., Chaharsoghi, V.A., Afrand, M.: Measurement of thermal conductivity of zno–tio2/EG hybrid nanofluid. J. Therm. Anal. Calorim. 125, 527–535 (2016)CrossRefGoogle Scholar
  62. 62.
    Esfe, M.H., Karimipour, A., Yan, W.-M., Akbari, M., Safaei, M.R., Dahari, M.: Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int. J. Heat Mass Transf. 88, 728–734 (2015)CrossRefGoogle Scholar
  63. 63.
    Gupta, A.K., Mishra, G., Nirmalkar, N., Chhabra, R.: Effect of confinement on heat transfer in aqueous nanofluids from a heated sphere. Powder Technol. 325, 576–596 (2018)CrossRefGoogle Scholar
  64. 64.
    Dardan, E., Afrand, M., Isfahani, A.M.: Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl. Therm. Eng. 109, 524–534 (2016)CrossRefGoogle Scholar
  65. 65.
    Kharat, P.B., Somvanshi, S.B., Kounsalye, J.S., Deshmukh, S.S., Khirade, P.P., Jadhav, K.: Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. In: AIP Conference Proceedings, p 050044. AIP Publishing (2018)Google Scholar
  66. 66.
    Wu, J., Zhao, J.: A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application. Prog. Nucl. Energy 66, 13–24 (2013)CrossRefGoogle Scholar
  67. 67.
    Kandlikar, S., Garimella, S., Li, D., Colin, S., King, M.R.: Heat transfer and fluid flow in minichannels and microchannels. Elsevier, NY (2005)Google Scholar
  68. 68.
    Faghri, A.: Heat pipe science and technology. Global Digital Press, Kanpur (1995)Google Scholar
  69. 69.
    Suganthi, K.S., Anusha, N., Rajan, K.S.: Low viscous ZnO–propylene glycol nanofluid: a potential coolant candidate. J. Nanoparticle Res. 15, 1986 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations