Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 167–173 | Cite as

Superconductivity in Perovskite Ba0.85−xLaxPr0.15(Bi0.20Pb0.80)O3−δ

  • Attia Firdous
  • Xiaoge Wang
  • Muhammad Asim Farid
  • Meng Zhang
  • Yan Wang
  • Jinling Geng
  • Junliang Sun
  • Guobao LiEmail author
  • Fuhui Liao
  • Jianhua LinEmail author
Original Paper


The perovskites Ba0.85−xLaxPr0.15(Bi0.20Pb0.80)O3−δ (0.0 ≤ x ≤ 0.07) have been synthesized by traditional solid-state method. They crystallize in P1 space group confirmed by x-ray and rotational electron diffraction data. X-ray photoelectron spectroscopy data indicate that the valences of bismuth are + 3 and + 5, while the valences of lead are + 2 and + 4 in this solid solution. They all show superconductivity. The \(T_{c}^{\text {zero}}\) (the highest temperature at which the sample shows zero electrical resistivity) decreases with an increase of La in the sample.


Solid-state reaction Perovskite Ba0.85−xLaxPr0.15(Bi0.20Pb0.80)O3−δ Superconductivity 



This work is supported by the National Natural Science Foundation of China (Grant 21771007).


  1. 1.
    Sleight, A.W., Gillson, J.L., Bierstedt, P.E.: Solid State Commun. 17, 27 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    Sleight, A.W., Cox, D.E.: Solid State Commun. 58, 347 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    Mattheiss, L.F., Gyorgy, E.M., Johnson, D.W.: Phys. Rev. B 37, 3745 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    Zhang, M., Farid, M.A., Zhang, H., Sun, J.L., Li, G.B., Liao, F.H., Lin, J.H.: J. Supercond. Nov. Magn. 30, 1705 (2017)CrossRefGoogle Scholar
  5. 5.
    Cava, R.J., Batlogg, B., Krajewski, J.J., Farrow, R., Rupp, Jr, L.W., White, A.E., Short, K., Peck, W.F., Kometani, T.: Nature 332, 814 (1988)Google Scholar
  6. 6.
    Kazakov, S.M., Chaillout, C., Bordet, P., Capponi, J.J., Nunez-Regueiro, M., Rysak, A., Tholence, J.L., Radaelli, P.G., Putilin, S.N., Antipov, E.V.: Nature 390, 148 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Rubel, M.H.K., Miura, A., Takei, T., Kumada, N., Mozahar Ali, M., Nagao, M., Watauchi, S., Tanaka, I., Oka, K., Azuma, M., Magome, E., Moriyoshi, C., Kuroiwa, Y., Azharul Islam, A.K.M.: Angew. Chem. Int. Ed. 53, 3599 (2014)CrossRefGoogle Scholar
  8. 8.
    Ali, M.S., Aftabuzzaman, M., Roknuzzaman, M., Rayhan, M.A., Parvin, F., Ali, M.M., Rubel, M.H.K., Islam, A.K.M.A.: Phys. C: Supercond. Appl. 506, 53 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Khasanova, N.R., Izumi, F., Kamiyama, T., Yoshida, K., Yamamoto, A., Tajima, S.: J. Solid State Chem. 144, 205 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    Khasanova, N.R., Yoshida, K., Yamamoto, A., Tajima, S.: Phys. C: Supercond. 356, 12 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Rubel, M.H.K., Takei, T., Kumada, N., Ali, M.M., Miura, A., Tadanaga, K., Oka, K., Azuma, M., Magomae, E., Moriyoshi, C., Kuroiwa, Y.: J. Alloys Compd. 634, 208 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhang, M., Farid, M.A., Wang, Y., Xie, J.L., Geng, J.L., Zhang, H., Sun, J.L., Li, G.B., Liao, F.H., Lin, J.H.: Inorg. Chem. 57, 1269 (2018)CrossRefGoogle Scholar
  13. 13.
    Rietveld, H.: J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  14. 14.
    Toby, B.: J. Appl. Crystallogr. 34, 210 (2001)CrossRefGoogle Scholar
  15. 15.
    Wan, W., Sun, J.L., Su, J., Hovmoller, S., Zou, X.D.: J. Appl. Crystallogr. 46, 1863 (2013)CrossRefGoogle Scholar
  16. 16.
    Li, G.B., Liu, S.X., Liao, F.H., Tian, S., Jing, X.P., Lin, J.H., Uesu, Y., Kohn, K., Saitoh, K., Terauchi, M., Di, N.L., Cheng, Z.H.: J. Solid State Chem. 177, 1695 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, H., Wang, C. -H., Li, G.B., Jin, T.N., Liao, F.H., Lin, J.H.: Inorg. Chem. 49, 5262 (2010)CrossRefGoogle Scholar
  18. 18.
    Wang, H., Yang, C.X., Lu, J., Wu, M.M., Su, J., Li, K., Zhang, J.R., Li, G.B., Jin, T.N., Kamiyama, T., Liao, F.H., Lin, J.H., Wu, Y.C.: Inorg. Chem. 52, 2388 (2013)CrossRefGoogle Scholar
  19. 19.
    Su, J., Kapaca, E., Liu, L.F., Georgieva, V., Wan, W., Sun, J.L., Valtchev, V., Hovmöller, S., Zou, X.D.: Microporous Mesoporous Mater. 189, 115 (2014)CrossRefGoogle Scholar
  20. 20.
    Hua, W., Chen, H., Yu, Z.B., Zou, X.D., Lin, J.H., Sun, J.L.: Angew. Chem. Int. Ed. 53, 5868 (2014)CrossRefGoogle Scholar
  21. 21.
    Zhou, Z.Y., Palatinus, L., Sun, J.L.: Inorg. Chem. Front. 3, 1351 (2016)CrossRefGoogle Scholar
  22. 22.
    Chen, H., Ju, J., Meng, Q.P., Su, J., Lin, C., Zhou, Z.Y., Li, G.B., Wang, W.L., Gao, W.L., Zeng, C.M., Tang, C., Lin, J.L., Yang, T., Sun, J.L.: J. Am. Chem. Soc. 137, 7047 (2015)CrossRefGoogle Scholar
  23. 23.
    Vegard, L.: Z. Phys. 5, 17–26 (1921)ADSCrossRefGoogle Scholar
  24. 24.
    Christie, A.B., Lee, J., Sutherland, I., Walls, J.M.: Appl. Surf. Sci. 15, 224 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    van der Heide, P.A.W.: Surf. Interface Anal. 33, 414 (2002)CrossRefGoogle Scholar
  26. 26.
    Kim, K., Jeong, J., Azad, A.K., Jin, S.B., Kim, J.H.: Appl. Surf. Sci. 365, 38 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Mazierski, P., Lisowski, W., Grzyb, T., Winiarski, M.J., Klimczuk, T., Mikoajczyk, A., Flisikowski, J., Hirsch, A., Koakowska, A., Puzyn, T., Zaleska-Medynska, A., Nadolna, J.: Appl. Catal. Environ. 205, 376 (2017)CrossRefGoogle Scholar
  28. 28.
    Cui, Y.J., Chen, Y.L., Cheng, C.H., Sorrell, C.C., Zhao, Y.: Rare Metal Mater. Eng. 44, 2081 (2015)CrossRefGoogle Scholar
  29. 29.
    Zhao, L.Z., Zhang, J.B.: Solid State Commun. 90, 709 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    Dissanayake, D., Kharas, K.C.C., Lunsford, J.H., Rosynek, M.P.: J. Catal. 139, 652 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular EngineeringPeking UniversityBeijingPeople’s Republic of China
  2. 2.Department of Chemistry, School of ScienceBeijing Jiaotong UniversityBeijingPeople’s Republic of China

Personalised recommendations