Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 185–190 | Cite as

Electrical Transport Properties of Carbon Nanotube/Polyester Polymer Composites

  • Z. Samir
  • S. Boukheir
  • R. Belhimria
  • M. E. AchourEmail author
  • L. C. Costa
Original Paper


The electrical properties of polyester/carbon nanotube composites have been investigated within the frequency range of 102 and 106 Hz and temperature from 200 to 360 K. This paper reports the electrical conductivity behavior as a function of filler content, frequency, and temperature. The electrical conductivity of the composites obeys the universal Jonschers’ power law and leads to the parameter ss with values as 0.12< s < 0.93. The impedance data is found to fit well with Mott conditions of variable range hopping conduction. The values of Mott’s temperature, density of states at the Fermi energy, range of hopping, and hopping energy are also presented in this work.


Electrical conductivity Hopping energy Composites Carbon nanotubes 



The authors gratefully acknowledge the financial support provided by National Center for Scientific and Technical Research (CNRST). We thank the FCT-CNRST bilateral cooperation and FEDER by funds through the COMPETE 2020 Programme and National Funds through FCT - Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013.


  1. 1.
    Koning, C., Grossiord, N., Hermant, M.C.: Polymer Carbon Nnanotube Composites: The Polymer Latex Concept, p 256. Pan Stanford, Singapore (2012)CrossRefGoogle Scholar
  2. 2.
    Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Carbon 44, 1624–1652 (2006)CrossRefGoogle Scholar
  3. 3.
    Bauhofer, W., Kovacs, J.Z.: Compos. Sci. Technol. 69, 1486–1498 (2009)CrossRefGoogle Scholar
  4. 4.
    Pandey, G., Thostenson, E.T.: Polym. Rev. 52, 355–416 (2012)CrossRefGoogle Scholar
  5. 5.
    Grady, B.P.: Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications, p 368. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  6. 6.
    Dresselhaus, M.S., Dresslhous, G., Avouris, P.: Carbon Nanotubes: Synthesis, Structure, Properties and Applications, p 246. Springer, Berlin (2001)CrossRefGoogle Scholar
  7. 7.
    Wang, F., Wang, J.W., Li, S.Q., Xiao, J.: Polym. Bull. 63, 101 (2009)CrossRefGoogle Scholar
  8. 8.
    Hu, Y., Shenderova, O.A., Hu, Z., Padgett, C.W., Brenner, D.W.: Rep. Prog. Phys. 69(6), 1847–1895 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Maruyama, B., Alam, K.: Carbon nanotubes and nanofibers in composite materials. SAMPE J. 59(3), 59–70 (2002)Google Scholar
  10. 10.
    Park, C., Ounaies, Z., Watson, K.A., Pawlowski, K., Lowther, S.E., Connell, J.W., Siochi, J.S.: In: Materials Research Society Symposium Proceedings, vol. 706, pp 91–96 (2001)Google Scholar
  11. 11.
    Vajtai, R.,Wei, B.Q., Zhang, Z.J., Jung, Y., Ramanath, G., Ajayan, P.M.: vol. 11, p 691 (2002)Google Scholar
  12. 12.
    Thostenson, E.T., Li, C., Chou, T.W.: Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005)CrossRefGoogle Scholar
  13. 13.
    Tzavalas, S., Drakonakis, V., Mouzakis, D.E., Fischer, D., Gregoriou, V.G.: Macromolecules 399, 150–9156 (2006)Google Scholar
  14. 14.
    Broza, G., Kwiatkowska,M., Roslaniec, Z., Schulte, K.: Polymer. 46, 5860–5867 (2005)CrossRefGoogle Scholar
  15. 15.
    Lee, H.J., Oh, S.J., Choi, J.Y., Kim, J.W., Han, J., Tan, L.S., Baek, J.B.: Chem. Mater. 17, 5057–5064 (2005)CrossRefGoogle Scholar
  16. 16.
    Mohanty, A.K., Misra, M., Drzal, L.T.: Compos. Interfaces 8, 313–343 (2001)CrossRefGoogle Scholar
  17. 17.
    Schloesser, T.: In: Proceedings of the 3rd International Symposium-Bioresource Hemp & Other Fiber Crops. Wolfsburg (2000)Google Scholar
  18. 18.
    Samir, Z., El Merabet, Y., Graça, M P F, Teixeira, S S, Achour, M E, Costa, L C: Polym. Compos. (2016)
  19. 19.
    Samir, Z., El Merabet, Y., Graça, M P F, Teixeira, S S, Achour, M E, Costa, L C: (2016)
  20. 20.
    Boukheir, S., Len, A., Füzi, J., Kenderesi, V., Achour, M E, Éber, N., Costa, L C, Outzourhit, A., Oueriagli, A.: J. Appl. Polym. Sci. 134(8) (2016)Google Scholar
  21. 21.
    Boukheir, S., Len, A., Füzi, J., Kenderesi, V., Achour, M E, Éber, N., Costa, L C, Outzourhit, A., Oueriagli, A.: (2016)
  22. 22.
    El Hasnaoui, M., Graça, M P F, Achour, M E, Costa, L C, Outzourhit, A., Oueriagli, A., El Harfi, A.: J. Non-Cryst. Solids 356, 1536–1541 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Achour, M E, Droussi, A., Zoulef, S., Gmati, F., Fattoum, A., Belhadj Mohamed, A., Zangar, H.: Spectrosc. Lett. 41(6), 299–304 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Mott, N.F.: Conduction in Non-Crystalline Materials, 2nd edn. Oxford University Press Inc. p. 146 (1993)Google Scholar
  25. 25.
    Psarras, G.C.: Compos. A: Appl. Sci. Manuf. 37(10), 1545–1553 (2006)CrossRefGoogle Scholar
  26. 26.
    Costa, L.C., Henry, F.: Non-Cryst. Solids 357(7), 1741–1744 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Sheng, P., Sichel, E.K., Gittleman, J.I.: Phys. Rev. Lett. 40(18), 1197 (1978)ADSCrossRefGoogle Scholar
  28. 28.
    Zhang, R., Dowden, A., Deng, H., Baxendale, M., Peijs, T.: Compos. Sci. Technol. 69(10), 1499–1504 (2009)CrossRefGoogle Scholar
  29. 29.
    Pradhan, B., Kohlmeyer, R.R., Setyowati, K., Owen, H.A.: Carbon 47(7), 1686–1692 (2009)CrossRefGoogle Scholar
  30. 30.
    Nair, K., Mitra, S.S.: J. Non-Cryst. Solids 24, 1 (1977)ADSCrossRefGoogle Scholar
  31. 31.
    Singh, R., Tandon, R.P., Panwar, V.S., Chandra, S.: J. Appl. Phys. 69(4), 2504–2511 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    Saravanan, S., Mathai, C.J., Anantharaman,M.R., Venkatachalam, S., Prabhakaran, P.V.: J. Appl. Polym. Sci. 91, 2529 (2004)CrossRefGoogle Scholar
  33. 33.
    Chandel, N., Mehta, N., Kumar, A.: Vacuum 86, 480 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    El Hasnaoui, M., Belattar, J., Achour, M.E., Costa, L.C., Lahjomri, F.: Optoelectron. Adv. Mater. 6(5–6), 610–613 (2012)Google Scholar
  35. 35.
    Davis, E A, Mott, N F: Magazine 22, 903 (1970)Google Scholar
  36. 36.
    Mott, N F, Davis, E A: Electronic Processes in Non-Crystalline Materials. Clarendon Press, Oxford (1971)Google Scholar
  37. 37.
    Mott, N F: Philos. Mag. 22(175), 7–29 (1970)ADSCrossRefGoogle Scholar
  38. 38.
    Davis, E A, Mott, N F: Conduction in non-crystalline systems V. Philos. Mag. 22(179), 903–922 (1970)ADSCrossRefGoogle Scholar
  39. 39.
    Mott, N F, Davis, E A, Street, R A: Philos. Mag. 32(5), 961–996 (1975)ADSCrossRefGoogle Scholar
  40. 40.
    Mott, N F: Philos. Mag. 19, 835–852 (1969)ADSCrossRefGoogle Scholar
  41. 41.
    Barrau, S., Demont, P., Peigney, A., Laurent, C., Lacabanne, C.: Macromolecules 36, 5187–5194 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    Ngai, K.L., Mundy, J.N., Jain, H., Kannerrt, O., Balzer-Jollenbeck, G.: Phys. Rev. B 39, 6169 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    Hayat, K., Rafiq, M.A., Durrani, S.K., Hasan, M.M.: Physica B 406, 309–314 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Macedo, P B, Mognihan, C.T., Bose, R.: Phys. Chem. Glasses 13, 171–179 (1972)Google Scholar
  45. 45.
    Jonscher, A K: Dielectric Relaxation in Solids, p 30. Chelsea Dielectric Press, London (1983)Google Scholar
  46. 46.
    Farid, A M, Atyia, H E, Hegab, N A: Vacuum 80, 284–294 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Okutan, M., Basaran, E., Bakan, H.I., Yakuphanoglu, F.: Physica B 364, 300–305 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Z. Samir
    • 1
  • S. Boukheir
    • 1
    • 2
  • R. Belhimria
    • 1
  • M. E. Achour
    • 1
    Email author
  • L. C. Costa
    • 3
  1. 1.LASTID Laboratory, Department of Physics, Faculty of SciencesUniversity Ibn TofailKenitraMorocco
  2. 2.Laboratoire LN2E, Faculté des SciencesUniversité Cadi AyyadMarrakechMorocco
  3. 3.I3N and Physics DepartmentUniversity of AveiroAveiroPortugal

Personalised recommendations