Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 2, pp 393–403 | Cite as

Observation of Room-Temperature Range Magnetocaloric Effect in PrSr1−xPbxMn2O6 (0.4 ≤ x ≤ 0.6) Double-Perovskite Manganite System

  • Ali Osman AyaşEmail author
Original Paper
  • 103 Downloads

Abstract

The Pr(Sr1−xPbx)Mn2O6 (0.4 ≤ x ≤ 0.6) double-perovskite manganite samples have been produced by using a sol-gel method. The Rietveld refinement method has been used to analyse the structural properties, and the results show that all samples are crystallized in monoclinic structure with P21/n space group without any impurity phase. The temperature dependence of magnetization measurement shows that samples exhibit paramagnetic to ferromagnetic phase transition by decreasing temperature. The values of the \(T_{\mathrm {C}}\) are determined as 286, 280 and 278 K for \(x =\) 0.4, 0.5 and 0.6 in Pr(Sr1−xPbx)Mn2O6 samples, respectively. Isothermal applied magnetic field-dependent magnetization curves are used to determine both order of magnetic phase transition and magnetic entropy change (ΔSM) value. \(-\)ΔSM values are found as 3.68, 3.15 and 2.85 J kg− 1 K− 1 for PSPM-4, PSPM-5 and PSPM-6 samples, respectively. Additionally, magnetic phase transition of the samples is identified as second-order magnetic phase transition that indicates accompanying small thermal and magnetic hysteresis to the samples during the phase transition. Relative cooling power (RCP) values are determined as 282, 233 and 268 J kg− 1 for PSPM-4, PSPM-5 and PSPM-6 samples, respectively.

Keywords

Magnetic cooling Magnetocaloric effect Magnetic entropy change Relative cooling power Curie temperature Double-perovskite manganites 

Notes

Acknowledgements

I would like to thank Dr. Selda Kılıç Çetin, Dr. Mustafa Akyol and Dr. Ahmet Ekicibil for their valuable discussion.

Funding Information

This work is supported by the Research Fund of Adıyaman University, Adıyaman, Turkey, under grant contract no. TFMAP/2017-0001.

References

  1. 1.
    Gschneidner, K.A., Pecharsky, V.K., Pecharsky, A.O., Zimm, C.B.: Recent developments in magnetic refrigeration. In: Woodward, R.C. (ed.) Rare Earths ’98, pp. 69–76 (1999)Google Scholar
  2. 2.
    Gschneidner, K.A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Yu, S.-C., Phan, M.-H.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2003)Google Scholar
  4. 4.
    Gschneidner, K.A., Pecharsky, V.K.: Magnetic refrigeration. In: Rare earths: Science, Technology & Applications Iİİ, pp. 209–221 (1996)Google Scholar
  5. 5.
    Ayaş, A.O., Akyol, M., Çetin, S.K/, Kaya. M., Dinçer, İ., Ekicibil, A., Elerman, Y.: Room temperature magnetocaloric effect in Pr1.75Sr1.25Mn2O7 double-layered perovskite manganite system. Philos. Mag. 97, 671–682 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Moon, J.Y., Kim, M.K., Choi, Y.J., Lee, N.: Giant anisotropic magnetocaloric effect in double-perovskite Gd2CoMnO6 single crystals. Sci. Rep. 7, 16099 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Anwar, M.S., Kumar, S., Ahmed, F., Arshi, N., Koo, B.H.: Structural, magnetic and magnetocaloric properties of La0.65Sr0.35 V 0.1Mn0.9O3 perovskite. Mater. Res. Bull. 47, 2977–2979 (2012)CrossRefGoogle Scholar
  8. 8.
    Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)ADSCrossRefGoogle Scholar
  9. 9.
    Blasco, J., García, J., de Teresa, J.M., Ibarra, M.R., Perez, J., Algarabel, P.A., Marquina, C., Ritter, C.: Structural, magnetic, and transport properties of the giant magnetoresistive perovskites. Phys. Rev. B 55, 8905–8910 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Das, N., Singh, R., Das, A., Gupta, L.C., Ganguli, A.K.: Structural, magnetic and dielectric properties of a new double perovskite Pr2CoTiO6. J. Solid State Chem. 253, 355–359 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Ayaş, A.O., Akyol, M., Ekicibil, A.: Structural and magnetic properties with large reversible magnetocaloric effect in (La1−xPrx)0.85Ag0.15MnO3 (0.0 \(=\) x \(=\) 0.5) compounds. Philos. Mag. 96, 922–937 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Troyanchuk, I.O., Trukhanov, S.V., Szymczak, H., Baerner, K.: Effect of oxygen content on the magnetic and transport properties of Pr0.5Ba0.5MnO3−γ. J. Phys. Condens. Matter 12, L155 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Rodríguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 192, 55–69 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    Cullity, B.D.: Elements of X-ray Diffraction, 3rd edn. Prentice Hall, Englewood Cliffs (2001)Google Scholar
  15. 15.
    Rodriguez-Martinez, L.M., Attfield, J.P.: Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, R15622–R15625 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    Damay, F, Maignan, A, Martin, C, Raveau, B: Cation size-temperature phase diagram of the manganites Ln0.5Sr0.5MnO3. J. Appl. Phys. 81, 6 (1997)CrossRefGoogle Scholar
  17. 17.
    Taşarkuyu, E., Coşkun, A., Irmak, A.E., Aktürk, S., Ünlü, G., Samancıoğlu, Y., Yücel, A, Sarıkürkçü, C., Aksoy, S., Acet, M.: Effect of high temperature sintering on the structural and the magnetic properties of La1.4Ca1.6Mn2O7. J. Alloys Compd. 509, 3717–3722 (2011)CrossRefGoogle Scholar
  18. 18.
    Çetin, S.K., Acet, M., Ekicibil, A.: Effect of Pr-substitution on the structural, magnetic and magnetocaloric properties of (La1−xPrx)0.67Pb0.33MnO3 (0.0 \(=\) x \(=\) 0.3) manganites. J. Alloys Compd. 727, 1253–1262 (2017)CrossRefGoogle Scholar
  19. 19.
    Debnath, J.C., Zeng, R., Kim, J.H., Shamba, P., Chen, D.P., Dou, S.X.: Effect of frozen spin on the magnetocaloric property of La0.7Ca0.3CoO3 polycrystalline and single crystal samples. J. Alloys Compd. 510, 125–133 (2012)CrossRefGoogle Scholar
  20. 20.
    Akyol, M., Adanur, İ., Ayaş, A.O., Ekicibil, A.: Magnetic field dependence of magnetic coupling in CoCr2O4 nanoparticles. Phys. B Condens. Matter 525, 144–148 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Phan, T. L., Dang, N.T., Ho, T.A., Manh, T.V., Thanh, T.D., Jung, C.U., Lee, B.W., Le, A. T., Phan, A. D., Yu, S.C.: First to second order magnetic phase transformation in La0.7Ca0.3−xBaxMnO3 exhibiting large magnetocaloric effect. J. Alloys Compd. 657, 818–834 (2016)CrossRefGoogle Scholar
  22. 22.
    Zhou, S., Guo, Y., Zhao, J., He, L., Shi, L.: Size-induced Griffiths phase and second-order ferromagnetic transition in Sm0.5Sr0.5MnO3 nanoparticles. J. Phys. Chem. C 115, 1535–1540 (2011)CrossRefGoogle Scholar
  23. 23.
    Rana, D.S., Kuberkar, D.G., Malik, S.K.: Field-induced abrupt change in magnetization of the manganite compounds La0.45Ca0.55MnO3 (R=Eu and Tb). Phys. Rev. B 73, 064407 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Bourouina, M., Krichene, A., Chniba Boudjada, N., Boujelben, W.: Structural disorder effect on the structural and magnetic properties of Pr0.4Re0.1Sr0.5−yBayMnO3 manganites (Re \(=\) Pr, Sm, Eu, Gd, Dy and Ho). Ceram. Int. 43, 12311–12320 (2017)CrossRefGoogle Scholar
  25. 25.
    Kılıç, A.M., Çetin, S., Güneş, M., Ekicibil, A., Farle, M.: Magnetocaloric effect in (La1−xSmx)0.67Pb0.33MnO3 (0 \(=\) x \(=\) 0.3) manganites near room temperature. J. Alloys Compd. 650, 285–294 (2015)Google Scholar
  26. 26.
    Banerjee, B.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)ADSCrossRefGoogle Scholar
  27. 27.
    Zhong, W., Au, C.-T., Du, Y.-W.: Review of magnetocaloric effect in perovskite-type oxides. Chin. Phys. B 22, 057501 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Tishin, A.M., Spichkin, Y.I.: The Magnetocaloric Effect and Its Applications. Institute of Physics Publishing, Bristol (2003)CrossRefGoogle Scholar
  29. 29.
    Gschneidner, K.A., Pecharsky, V.K.: Magnetocaloric Materials. Annu. Rev. Mater. Sci. 30, 387–429 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechatronics Engineering, Faculty of TechnologyAdıyaman UniversityAdıyamanTurkey

Personalised recommendations