Nanocrystalline Nickel-Substituted Lanthanum Cobaltites Synthesized by Urea Combustion Method: Magnetic and Transport Properties

  • Nisha Choudhary
  • Narayan Dutt Sharma
  • Mukesh Kumar Verma
  • Suman Sharma
  • Devinder Singh
Original Paper
  • 11 Downloads

Abstract

We have systematically investigated the effect of Ni substitution on the structural, magnetic and transport properties of LaCoO3. Single-phase rhombohedral structure with space group R-3c is confirmed by the Rietveld refinement of X-ray diffraction data in all samples. The unit cell parameters were found to increase with Ni doping. The FM and AFM were observed to coexist as confirmed by M–H hysteresis. Positive values of Θ for nickel-doped samples are consistent with the existence of FM interactions. The effective magnetic moment decreases with Ni substitution. All the samples exhibit temperaturedependent semiconducting behaviour. The electrical resistivity decreases considerably with increasing Ni content and with increasing temperature. The transport mechanism has been investigated by fitting a nearest-neighbour small polaron hopping (SPH) model.

Keywords

Combustion method Crystal structure Magnetic properties Transport properties 

Notes

Acknowledgments

The authors are also thankful to Dr. Harpreet Singh, Central Research Facility Section, Indian Institute of Technology Ropar, for recording the XRD. Thanks are also due to Prof. Ramesh Chandra, Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, for recording the TEM. We are also thankful to the Director of Central Instruments Facility, Indian Institute of Technology, Guwahati, for carrying out the M–H magnetic measurements.

References

  1. 1.
    Radaelli, P.G., Cheong, S.W.: Structural phenomena associated with the spin-state transition in LaCoO3. Phys. Rev. B 66, 094408 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Menyuk, N., Dwight, K., Raccah, P.M.: Low temperature crystallographic and magnetic study of LaCoO3. J. Phys. Chem. Solids 28, 549 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    Yamaguchi, S., Okimoto, Y., Taniguchi, H., Tokura, Y.: Spin-state transition and high-spin polarons in LaCoO3. Phys. Rev. B 53, R2926 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    Korotin, M.A., Ezhov, S.Y., Solovyev, I.V., Anisimov, V.I., Khomskii, D.I., Sawatzky, G. A.: Intermediate-spin state and properties of LaCoO3. Phys. Rev. B 54, 5309 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Naiman, C.S., Gilmore, R., Dibartolo, B., Linz, A., Santoro, R.: Interpretation of the magnetic properties of LaCoO3. J. Appl. Phys. 36, 1044 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    Chainani, A., Mathew, M., Sarma, D.D.: Electron-spectroscopy study of the semiconductor-metal transition in La1−xSrxCoO3. Phys. Rev. B 46, 9976 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    Rao, C.N.R., Seikh, M.M., Narayana, C.: Spin-state transition in LaCoO3 and related materials. Top Curr. Chem. 234, 1 (2004)CrossRefGoogle Scholar
  8. 8.
    Abbate, M., Fuggle, J.C., Fujimori, A., Tjeng, L.H., Chen, C.T., Potze, R., Sawatzky, G.A., Eisaki, H., Uchida, S.: Electronic structure and spin-state transition of LaCoO3. Phys. Rev. B 47, 16124 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Heikes, R.R., Miller, R.C., Mazelsky, R.: Magnetic and electrical anomalies in LaCoO3. Physica (The Hague) 30, 1600 (1964)ADSCrossRefGoogle Scholar
  10. 10.
    Jonker, G.H.: Magnetic and semiconducting properties of perovskites containing manganese and cobalt. J. Appl. Phys. 37, 1424 (1966)ADSCrossRefGoogle Scholar
  11. 11.
    Raccah, P.M., Goodenough, J.B.: First-order localized-electron collective electron transition in LaCoO3. Phys. Rev. 155, 932 (1967)ADSCrossRefGoogle Scholar
  12. 12.
    Potze, R.H., Sawatzky, G.A., Abbate, M.: Possibility for an intermediate-spin ground state in the charge-transfer material SrCoO3. Phys. Rev. B 51, 11501 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    Blasco, J., Garcia, J.: Structural, magnetic and electrical properties of NdNi1−xFexO3 and NdNi1−xCoxO3 systems. J. Phys. Chem. Solids 55, 843 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    Raychaudhuri, A.K.: Metal-insulator transition in perovskite oxides: a low temperature perspective. Adv. Phys. 44, 21 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Rajeev, K.P., Raychaudhuri, A.K.: Quantum corrections to the conductivity in a perovskite oxide: a low-temperature study of LaNi1−xCoxO3 (0 x 0.75). Phys. Rev. B 46, 1309 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    Blasco, J., Garcia, J.: Magnetic properties of NdNi1−xCoxO3 samples: evidence of spin-glass behavior. Phys. Rev. B 51, 3569 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Hammer, D., Wu, J., Leighton, C.: Metal-insulator transition, giant negative magnetoresistance, and ferromagnetism in LaCo1−yNiyO3. Phys. Rev. B 69, 134407 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Wu, T., Wu, G., Chen, X.H.: Effect of disorder on transport and electronic structure in LaCo1−xNixO3 system. Solid State Commun. 145, 293 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Pérez, J., García, J., Blasco, J., Stankiewicz, J.: Spin-glass behavior and giant magnetoresistance in the (RE)Ni,0.3Co0.7O3(RE = La,Nd,Sm) system. Phys. Rev. Lett. 80, 2401 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Escote, M.T., Westphal, C.H., Jardim, R.F.: Magnetic properties of polycrystalline LnNi0.3Co0.7O3(Ln = la,Pr) compounds. J. Appl. Phys. 87, 5908 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Patil, K.C., Aruna, S.T., Mimani, T.: Combustion synthesis: an update. Current Opinion in Solid State Mater Sci. 6, 507 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Liu, T., Xu, Y.: Synthesis of nanocrystalline LaFeO3 powders via glucose sol–gel route. Mater. Chem. Phys. 129, 1047 (2011)CrossRefGoogle Scholar
  23. 23.
    Shen, H., Cheng, G., Wu, A., Xu, J., Zhao, J.: Combustion synthesis and characterization of nano-crystalline LaFeO3 powder. Phys. Status Solidi A 206, 1420 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Qi, X., Zhou, J., Yue, Z., Gui, Z., Li, L.: Auto-combustion synthesis of nanocrystalline LaFeO3. Mater Chem. Phys. 78, 25 (2002)CrossRefGoogle Scholar
  25. 25.
    Jain, S.R., Adiga, K.C., Verenekar, V.R.P.: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame 40, 71 (1981)CrossRefGoogle Scholar
  26. 26.
    Itoh, M., Natori, I., Kubota, S., Motoya, K.: Hole-doping effect on magnetic properties of La1−xSrxCoO3(0x0.5). J. Magn. Magn. Mater. 140, 1811 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    Wu, J., Leighton, C.: Glassy ferromagnetism and magnetic phase separation in La1−xSrxCoO3. Phys. Rev. B 67, 174408 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Phelan, D., Louca, D., Kamazawa, K., Hundley, M.F., Yamada, K.: Influence of the ionic size on the evolution of local Jahn-Teller distortions in cobaltites. Phys. Rev. B 76, 104111 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Kriner, M., Zobel, C., Reichl, A., Baier, J., Cwik, M., Berggold, K., Kierspel, H., Zabara, O., Freimuth, A., Lorenz, T.: Structure, magnetization, and resistivity of La1−xMxCoO3(M = ca,Sr,and Ba). Phys. Rev. B 69, 094417 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Larson, A.C., Von Dreele, R.B.: General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86, 748 (2004)Google Scholar
  32. 32.
    Kozuka, H., Ohbayashi, K., Koumoto, K.: LaCo1−xNixO3 with improved electrical conductivity. Ing. Chem. 51, 9259 (2012)Google Scholar
  33. 33.
    Tomes, P., Aguirre, M.H., Robert, R., Shkabko, A., Otal, E.H., Weidenkaff, A.: Transport and magnetic properties of PrCo1−xNixO3(x = 0.0 − 0.7). J. Phys. D: Appl. Phys. 44, 305402 (2011)CrossRefGoogle Scholar
  34. 34.
    Wang, P., Yao, L., Wang, M., Wu, W.: XPS And voltammetric studies on La1−xSrxCoO3−δ perovskite oxide electrodes. J. Alloys Compd. 311, 53 (2000)CrossRefGoogle Scholar
  35. 35.
    Klug, H.P., Alexander, L.E.: X-ray diffraction procedures for polycrystalline and amorphous materials, p. 637. Wiley, New York (1997)Google Scholar
  36. 36.
    Nica, V., Sauer, H.M., Embs, J., Hempelmann, R.: Calorimetric method for the determination of Curie temperatures of magnetic nanoparticles in dispersion. J. Phys.: Condens. Matter 20, 204115 (2008)ADSGoogle Scholar
  37. 37.
    Androulakis, J., Katsarakis, N., Viskadourakis, Z., Giapintzakis, J.: Comparative study of the magnetic and magnetotransport properties of a metallic and a semiconducting member of the solid solution LaNixCo1−xO3. J. Appl. Phys. 93, 5484 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    Kumar, V., Kumar, Y., Kumar, R., Shukla, D.K., Arora, S.K., Shvets, I.V., Ravi Kumar, R.: Structural, magnetic and X-ray absorption studies of NdCoxNi1−xO3(0x0.5). J. Appl. Phys. 113, 043918 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Singh, D., Choudhary, N., Mahajan, A., Singh, S., Sharma, S.: Nanosized rare earth cobaltite LaCoO3 synthesized by urea combustion method. Ionics 21, 1031 (2015)CrossRefGoogle Scholar
  40. 40.
    Liu, Y., Hai-Jin, L., Qing, Z., Yong, L., Hou-Tong, L.: Electrical transport and thermoelectric properties of Ni-doped perovskite-type YCoxNi1−xO3(0x0.07) prepared by sol-gel process. Chin. Phys. B 22, 057201 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Robert, R., Bocher, L., Sipos, B., Döbeli, M., Weidenkaff, A.: Ni-doped cobaltates as potential materials for high temperature solar thermoelectric converters. Progress in Solid State Chem. 35, 447 (2007)CrossRefGoogle Scholar
  42. 42.
    Robert, R., Myriam, H., Aguirre, M.H., Bocher, L., Trottmann, M., Heiroth, S., Thomas Lippert, T., Döbeli, M., Weidenkaff, A.: Thermoelectric properties of LaCo1−xNixO3 polycrystalline samples and epitaxial thin films. Solid State Sci. 10, 502 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Liu, Y., Qin, X.Y.: Temperature dependence of electrical resistivity for Ca-doped perovskite-type Y1−xCaxCoO3 prepared by sol–gel process. J. Phys. Chem. Solids 67, 1893 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    Snyder, G.J., Hiskes, R., DiCarolis, S., Beasley, M.R., Geballe, T.H.: Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    Xin, H.X., Qin, X.Y., Zhu, X.G., Liu, Y.: Temperature dependence of electrical resistivity for nanocrystalline Mg3 + xSb2 prepared by mechanical alloying. J. Phys. D: Appl. Phys. 39, 375 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Hammer, D., Wu, J., Leighton, C.: Metal-insulator transition, giant negative magnetoresistance and ferromagnetism in LaCo1−yNiyO3. Phys. Rev. B 69, 134407 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nisha Choudhary
    • 1
  • Narayan Dutt Sharma
    • 1
  • Mukesh Kumar Verma
    • 1
  • Suman Sharma
    • 1
  • Devinder Singh
    • 1
  1. 1.Department of ChemistryUniversity of JammuJammuIndia

Personalised recommendations