Observation of Magnetic Phase Transition and Magnetocaloric Effect in Ba1−xSr x MnO3−δ

Original Paper
  • 35 Downloads

Abstract

A series of perovskite materials (BaMnO3−δ and Ba1−xSr x MnO3) were synthesized by a solid-state reaction method. The content of oxygen vacancy can be controlled by verifying the sintering temperature and atmosphere. Two obvious divarications between zero-field-cooling curves and field-cooling curves were observed in a high-temperature region of 250–300 K and at a low temperature of 40 K, respectively. It is found that the different oxygen vacancy contents in BaMnO3−δ cause the change of crystalline structure and variation of the divarication temperature at a high-temperature region. The factor that controls the negative magnetic susceptibility was discussed. The superexchange interaction between Mn ions can give rise to the coexistence of the ferromagnetic phase and antiferromagnetic phase in the system. We further performed the study of magnetocaloric effect in Sr-doped BaMnO3. However, the values of magnetic entropy change and refrigeration coefficient are much smaller than those of rare-earth manganites due to the weak magnetocrystalline anisotropy in Ba1−xSr x MnO3.

Keywords

Alkaline-earth manganites Magnetic phase transition Magnetic entropy change 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 11604201).

References

  1. 1.
    von Hippel, A.: Rev. Mod. Phys. 22, 221 (1950)ADSCrossRefGoogle Scholar
  2. 2.
    Van Aken, B.B., Palstra, T.T.M., Filippetti, A., Spaldin, N.A.: Nat. Mater. 3, 164 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Fennie, C.J., Rabe, K.M.: Phys. Rev. B 72(R), 100103 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Ederer, C., Spaldin, N.A.: Phys. Rev. B 74(R), 020401 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Bhattacharjee, S., Bousquet, E., Ghosez, P.: Phys. Rev. Lett. 102, 117602 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Nourafkan, R., Kotliar, G., Tremblay, A.-M.S.: Phys. Rev. B 90(R), 220405 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Korneta, O.B., Qi, T.F., Ge, M., Parkin, S., De Long, L.E.: J. Phys.: Condens. Matter 23, 435901 (2011)Google Scholar
  8. 8.
    Bhattacharjee, S., Bousquet, E., Ghosez, P.: Phys. Rev. Lett. 102, 117602 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Rondinelli, J.M., Eidelson, A.S., Spaldin, N.A.: Phys. Rev. B 79, 205119 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Adkin, O.J., Hayward, M.A.: Chem. Mater. 19, 755 (2007)CrossRefGoogle Scholar
  11. 11.
    Søndenå, R., Stølen, S., Ravindran, P.: Phys. Rev. B 75, 184105 (2007)CrossRefGoogle Scholar
  12. 12.
    Shannon, R.D.: Acta Crystallogr. Sect. A: Cryst. Phys. 32, 751 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    Jin, J.L., Zhang, X.Q., Li, G.K., Cheng, Z.H., Zheng, L., Lu, Y.: Phys. Rev. B 83, 184431 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Jin, J.L., Zhang, X.Q., Ge, H., Cheng, Z.H.: Phys. Rev. B 214426, 85 (2012)Google Scholar
  15. 15.
    Midya, A., Das, S.N., Mandal, P., Pandya, S., Ganesan, V.: Phys. Rev. B 84, 235127 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Pecharsky, V.K., Gschneidner, K.A. Jr.: J. Appl. Phys. 86, 565 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Wagh, A.A., Suresh, K.G., Kumar, P.S.A., Elizabeth, S.: J. Phys. D: Appl. Phys. 48, 135001 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Hong, F., Cheng, Z., Zhao, H., Kimura, H., Wang, X.: Appl. Phys. Lett. 99, 092502 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Fang, Y.F., Yang, Y., Liu, X.Z., Kang, J., Hao, L.J., Chen, X.P., Xie, L., Sun, G.G., Chandragiri, V., Wang, C.W., Cao, Y.M., Chen, F., Liu, Y.T., Chen, D.F., Cao, S.X., Lin, C.T., Ren, W., Zhang, J.C. Sci. Rep. 6, 33448 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Materials Genome InstituteShanghai UniversityShanghaiChina

Personalised recommendations