Magnetic, Optoelectronic, and Thermodynamic Properties of Sr2CrXO6 (X = La and Y): Half-Metallic and Ferromagnetic Behavior

  • Slimane Haid
  • Bouabdellah Bouadjemi
  • Samir Bentata
  • Tayeb Lantri
  • Ali Çoruh
  • Ali Zitouni
  • Bachir Bouhafs
  • Zoubir Aziz
Original Paper
  • 17 Downloads

Abstract

The effects of spin polarization on the structure, magnetic, and optoelectronic properties of Cr-based series of double perovskites Sr2CrXO6 (X = La and Y) have been studied by using the full-potential linearized augmented plane-wave method (FP-LAPW), based on the density functional theory (DFT) as implemented in the Wien2k code, within the generalized gradient approximation (GGA), GGA + U, and GGA plus Trans-Blaha-modified Becke–Johnson (TB-mBJ) as the exchange correlation. Our results show a similar half-metallic ferromagnetic ground state for both materials. From the electronic properties, it is found that Sr2CrYO6 has a direct band gap at (Γ-Γ) direction and Sr2CrLaO6 has an indirect band gap at (Γ-W) direction. Furthermore, we have computed the optic and thermodynamic properties which are investigated for the first time. Consequently, the magnetic, optoelectronic, and thermodynamic properties show these compounds are promising for high technological applications, namely spintronic materials.

Keywords

Double perovskite FP-LAPW Ferromagnetic Optoelectronic properties Spintronic 

References

  1. 1.
    Cheol, H., Hyun, J., Eom, J., et al.: Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Bader, S.D., Parkin, S.S.P.: Spintronics. Annu. Rev. Condens. Matter Phys. 1, 71–88 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Li, M., Yuan, H.-M., Xu, W., Han, M., Yao, L.-R., Yang, M., Feng, S.-H.: Chem. Res. Chin. Univ. 28(5), 788–791 (2012)Google Scholar
  4. 4.
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Nature 442, 759 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Scott, J.F.: Nat. Mater. 6, 256 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Khomskii, D.I.: J. Magn. Magn. Mater. 306, 1 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Prellier, W., Singh, M.P., Murugavel, P.: J. Phys. Condens. Matter 17, R803 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Sleight, A.W., Ward, R.: Inorg. Chem. 3, 292 (1964)CrossRefGoogle Scholar
  9. 9.
    Ullah, M., Khan, S.A., Murtaza, G., Khenata, R., Ullah, N., Bin Omran, S.: J. Magn. Magn. Mater. 377, 197–203 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Gassoumi, A., Musa, M., Saad, H.-E.: Mater. Sci. Semicond. Process. 50, 14–19 (2016)CrossRefGoogle Scholar
  11. 11.
    Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K., Tokura, Y.: Phys. Rev. B 59, 11159 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Hwang, H.-Y., Cheong, S.-W., Ong, N.P., Battlogg, B.: Phys. Rev. Lett. 77, 2041 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Itoh, H., Inoue, J.: J. Magn. Magn. Mater. 226, 930 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Zutic, I., Fabian, J., Das Sarma, S.: Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    De Boeck, J., Van Roy, W., Das Motsnyi, J.V., Liu, Z., Lagae, L., Boeve, H., Dessein, K., Borghs, G.: Semicond. Sci. Technol. 17, 342 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Liu, Y.P., Fuh, H.R., Xiao, Z.R., Wang, Y.K.: J. Alloys Compd. 586, 289–294 (2014)CrossRefGoogle Scholar
  17. 17.
    Julliere, M.: Phys. Lett. 54, 225 (1975)CrossRefGoogle Scholar
  18. 18.
    Jimbo, M., Kanda, T., Goto, S.: J. Magn. Magn. Mater. 126, 422 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Ohno, H.: Science 281, 951 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Pickett, W.E., Moodera, J.S.: Phys. Today 54, 39 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Schwarz, K.: J. Phys. F: Met. Phys. 16, L211 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    Park, M.S., Kwon, S.K., Toun, S.J., Min, B.I.: Phys. Rev. B 59, 10018 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  24. 24.
    Bouadjemi, B., Bentata, S., Abbad, A., Benstaali, W., Bouhafs, B.: Solid State Commun. 168, 6–10 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Jeng, H.T., Guo, G.Y.: Phys. Rev. B 67, 094438 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Chan, T.S., Liu, R.S., Guo, G.Y., Hu, S.F., Lin, J.G., Chen, J.M., Chang, C.-R.: Solid State Commun. 133, 265–270 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Wu, H.: Phys. Rev. B 64, 125126 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    Solovyev, I.V.: J. Magn. Magn. Mater. 268, 194–197 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Song, W., Wang, J., Wu, Z.: Chem. Phys. Lett. 482, 246–248 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, J., Wang, J., Wu, Z.: Chem. Phys. Lett. 501, 324–329 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Galasso, F.: Inorg. Chem. 2, 482 (1963)CrossRefGoogle Scholar
  32. 32.
    Nakamura, T., Choy, J.H.: J. Solid State Chem. 20, 233 (1977)ADSCrossRefGoogle Scholar
  33. 33.
    Michalik, J.M., De Teresa, J.M., Blasco, J., Ritter, C., Algarabel, P.A., Ibarra, M.R., Kapusta, C.Z.: Solid State Sci. 12, 1121e1130 (2010)CrossRefGoogle Scholar
  34. 34.
    Kato, H., Okuda, T., Okimoto, Y., Tomioka, Y.: Phys. Rev. B 69, 184412 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Tang, C.Q., Zhang, Y., Dai, J.: Solid State Commun. 133, 219 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Philipp, J.B. et al.: Phys. Rev. B 68, 144431 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Musa, M., Saad, H.-E.: J. Phys. Chem. Solids 94, 1–11 (2006)Google Scholar
  38. 38.
    Morrow, R., Soliz, J.R., Hauser, A.J., Gallagher, J.C., Susner, M.A., Sumption, M.D., Aczel, A.A., Yan, J., Yang, F., Woodward, P.M.: The effect of chemical pressure on the structure and properties of A2CrOsO6 (A = Sr, Ca) ferrimagnetic double perovskite. J. Solid State Chem.  https://doi.org/10.1016/j.jssc.2016.02.025
  39. 39.
    Liu, Y.P., Chen, S.H., Tung, J.C., Wang, Y.K.: Solid State Commun. 152(11), 968–973 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Andersen, O.K.: Phys. Rev. B 12, 3060 (1975)ADSCrossRefGoogle Scholar
  41. 41.
    Wong, K.M., Alay-e-Abbas, S.M., Shaukat, A., Fang, Y., Lei, Y.: J. Appl. Phys. 113, 014304 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Wong, K.M., Alay-e-Abbas, S.M., Fang, Y., Shaukat, A., Lei, Y.: J. Appl. Phys. 114, 034901 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Techn. Universität Wien, Austria. ISBN 3-9501031-1-2 (2001)Google Scholar
  44. 44.
    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Jeng, H.-T., Guo, G.Y.: Phys. Rev. B 67(094438), 1 (2003)Google Scholar
  46. 46.
    Murnaghan, F.D.: Proc. Nat. Acad. Sci. U.S.A. 30, 244 (1944)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Shannon, R.D.: Acta Crystallogr. A 32, 751–767 (1976)ADSCrossRefGoogle Scholar
  48. 48.
    Choy, J.-H., Park, J.-H., Hong, S.T., Kim, D.K.: J. Solid State Chem. 111, 370–379 (1994)ADSCrossRefGoogle Scholar
  49. 49.
    Philipp, J.B., Majewski, P., Alff, L., Erb, A., Gross, R., Graf, T., Brandt, M.S., Simon, J., Walther, T., Mader, W., Topwal, D., Sarma, D.D.: Phys. Rev. B 68, 144431 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    Wooten, F.: Optical Properties of Solids. Academic Press, New York (1972)Google Scholar
  51. 51.
    Jalilian, J.: Comment on ‘Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound’. J. Alloys Compd. 626, 277–279 (2015)CrossRefGoogle Scholar
  52. 52.
    Jalilian, J., Motiepour, P.: J. Magn. Magn. Mater. 396, 219–221 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    Sharma, S., Ambrosch-Draxl, C., Khan, M.A., Blaha, P., Auluck, S.: Phys. Rev. B 60, 8610 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    Puschnig, P., Ambrosch-Draxl, C.: Phys. Rev. B 66, 165105 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188–5192 (1976)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Peng, F., Fu, H.Z., Yang, X.D.: Physica B 403, 2851–2855 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    Blanco, M.A., Francisco, E., Luana, V.: Comput. Phys. Commun. 158, 57–72 (2004)ADSCrossRefGoogle Scholar
  58. 58.
    Blanco, M.A., Pendas, A.M., Francisco, E., Recio, J.M., Franco, R.: J. Mol. Struct. Theochem. 368, 245–255 (1996)CrossRefGoogle Scholar
  59. 59.
    Florez, M., Recio, J.M., Francisco, E., Blanco, M.A., Pendas, A.M.: Phys. Rev. B 66, 144112 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    Sahnoun, O., Bouhani-Benziane, H., Sahnoun, M., Driz, M., Daul, C.: Comput. Mater. Sci. 77, 316–321 (2013)CrossRefGoogle Scholar
  61. 61.
    Petit, S.T., Dulong, P.l.: Ann. Chim. Phys. 10, 95 (1819)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Technology and Solid’s Properties, Faculty of Sciences and TechnologyAbdelhamid Ibn Badis University of MostaganemMostaganemAlgeria
  2. 2.Faculty of Art and Sciences, Physics DepartmentUniversity of SakaryaSakaryaTurkey
  3. 3.Laboratory of Modelling and Simulation in Materials ScienceDjillali Liabès University of Sidi Bel-AbbèsSidi Bel-AbbesAlgeria

Personalised recommendations