Effects of Laser-Cutting and Spark Erosion Techniques and Heat Treatment on the Magnetic Properties of Grain-Oriented Transformer Steels

Original Paper
  • 25 Downloads

Abstract

Spark erosion and laser-cutting processes were examined in terms of their effects on the magnetic properties of grain-oriented electrical steels at working frequencies. The maximum permeability value in each case was considered a reference to determine the quantitative effect of cutting and eroding methods as well as the effects of heat treatment. To minimize the deterioration that appears after the piercing process is implemented, the specimens were subjected to heat treatment at the most appropriate temperature. The influence of stress-relief annealing could be observed throughout the domain refinement on the surface by using magneto-optical Kerr microscopy. Additionally, it was clearly seen that the domain contrast at the cut edge of the spark-eroded sample was more uniform than that provided by laser cutting upon applying a high AC-field amplitude.

Keywords

Cutting effect Spark eroding Laser cutting Magneto-optical Kerr effect Relative permeability Coercive field 

Notes

Acknowledgements

The author would specially like to thank Prof. Rudolf Schäfer from the Leibniz Institute for Solid State and Materials Research Dresden IFW for technical and scientific contribution and acknowledge S. Pofahl from IFW Dresden for sample preparation.

References

  1. 1.
    Emura, M., Landgraf, F.J.G., Ross, W., Barreta, J.R.: The influence of cutting technique on the magnetic properties of electrical steels. J. Magn. Magn. Mater. 254, 358–60 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Kurosaki, Y., Mogi, H., Fujii, H., Kubota, T., Shiozaki, M.: Importance of punching and workability in non-oriented electrical steel sheets. J. Magn. Magn. Mater. 320, 2474–2480 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Moses, A.J., Derebasi, N., Loisos, G., Schoppa, A.: Aspects of the cut-edge effect stress on the power loss and flux density distribution in electrical steel sheets. J. Magn. Magn. Mater. 215, 690–692 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Landgraf, F.J.G., Emura, M.: Losses and permeabilityimprovement bystress relieving fully processed electrical steels with previous small deformations. J. Magn. Magn. Mater. 242–245, 152–156 (2002)CrossRefGoogle Scholar
  5. 5.
    Yadav, V., Jain, V.K., Dixit, P.M.: Thermal stresses due to electrical discharge machining. Int. J. Mach. Tool Manuf. 42, 877–888 (2002)CrossRefGoogle Scholar
  6. 6.
    Naumoski, H., Riedmüller, B., Minkow, A., Herr, U.: Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel. J. Magn. Magn. Mater 392, 126–133 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Belhadj, A., Baudouin, P., Breaban, F., Deffontaine, A., Dewulfd, M., Houbaert, Y.: Effect of laser cutting on microstructure and on magnetic properties of grain-non oriented electrical steels. J. Magn. Magn. Mater. 256, 20–31 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Araujo, E.G., Schneider, J., Verbeken, K., Pasquarella, G., Houbaert, Y.: Dimensional effects on magnetic properties of Fe–Si steels due to laser and mechanical cutting. IEEE Trans. Mag. 46(2), 213–216 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Steentjes, S., Franck, D., Hameyer, K., Vogt, S., Bednarz, M., Volk, W., Dierdorf, J., Hirt, G., Schnabel, V., Mathur, H.N., Korte-Kerzel, S.: On the effect of material processing: microstructural and magnetic properties of electrical steel sheets. Int. Electric Drives Prod. Conference, 1–7 (2014)Google Scholar
  10. 10.
    Klimczyk, P.K., Anderson, P., Moses, A.J., Davies, M.: Influence of cutting techniques on magnetostriction under stress of grain oriented electrical steel. IEEE Trans. on Mag. 48(4), 1417–1420 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Baudouin, P., Wulf, M.D., Kestens, L., Houbaert, Y.: The effect of the guillotine clearance on the magnetic properties of electrical steels. J. Magn. Magn. Mater 256, 32–40 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Baudouin, P., Belhadj, A., Houbaert, Y.: Effect of the rapid heating on the magnetic properties of non-oriented electrical Steels. J. Magn. Magn. Mater. 238, 221–225 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Shankar, P., Jain, V.K., Sundararajan, T.: Analysis of spark profiles during EDM process. Mach. Sci. Technol. 1(2), 195–217 (1997)CrossRefGoogle Scholar
  14. 14.
    Bisaria, H., Shandilya, P.: Machining of Metal Matrix Composites by EDM and Its Variants: a Revew. DAAAM International Scientific Book, Chpt 23, pp. 267–282. Vienna, Austria (2015)CrossRefGoogle Scholar
  15. 15.
    Tsai, H.C., Yan, B.H., Huang, F.H.: EDM Performance of Cr/Cu based composite electrodes. Inter. J. of Mach. Tools & Man 43, 245–252 (2003)CrossRefGoogle Scholar
  16. 16.
    Gunes, T., Schäfer, R., Derebasi, N.: Quantitative analysis of magnetic field distribution around circular non-magnetic region in grain-oriented Fe-3% Si steel. IEEE Trans. Magn. 54(2), 1–8 (2018)CrossRefGoogle Scholar
  17. 17.
    Hubert, A., Schäfer, R.: Magnetic Domains, 3rd edn. Springer, Heidelberg (1998)Google Scholar
  18. 18.
    Marketos, P., Meydan, T., Snell, D.: Performance of single-phase transformer cores assembled from consolidated stacks of electrical steels. J. Magn. Magn. Mater, 254–255, 612–614 (2003)Google Scholar
  19. 19.
    Gunes, T., Derebasi, N., Erdonmez, C.: Localized flux density distribution around a hole in non-oriented electrical steels. IEEE Trans. Magn. 50(1), 2000204 (2015)Google Scholar
  20. 20.
    Rygal, R., Moses, A.J., Derebasi, N., Schneider, J., Schoppa, A.: Influence of cutting stress on magnetic field and flux density distribution in non-oriented electrical Steels. J. Magn. Magn. Mater. 687, 215–216 (2000)Google Scholar
  21. 21.
    Kockar, H., Meydan, T.: Specific power loss comparisons of magnetic strips using standard Epstein frame. J. Korean Phys. Soc. 40(5), 918–920 (2002)Google Scholar
  22. 22.
    Schäfer, R.: Investigation of Domains and Dynamics of Domain Walls by the Magneto-Optical Kerr Effect H. KronmÜller, S. Parkin (Eds.) Handbook of Magnetism and Advanced Magnetic Materials, Vol. 3. John Wiley & Sons Ltd (2007)Google Scholar
  23. 23.
    Volkers, R.: The Influence of Dislocations on Magnetic Properties in Steel. Delft University of Technology, Msc thesis (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Energy Systems Engineering DepartmentUniversity of YalovaYalovaTurkey

Personalised recommendations