The Effect of Hf Substituting for Cu on the Glass-Forming Ability, Crystallization Behavior, and Saturation Magnetization in Fe85Si2B8P4Cu1−xHf x Alloys

Original Paper
  • 12 Downloads

Abstract

The effect of Hf substituting for Cu on the glass-forming ability (GFA), crystallization behavior, and saturation magnetization (Ms) in Fe-rich Fe85Si2B8P4Cu1−xHf x alloys has been investigated. The result shows that the addition of Hf plays a positive role in improving GFA, and the Fe85Si2B8P4Cu0.5Hf0.5 alloy ribbon shows an entirely amorphous structure. Both the ribbons of Fe85Si2B8P4Cu1 and Fe85Si2B8P4Cu0.5Hf0.5 have two obviously exothermic crystallization peaks, and the addition of Hf improves the onset temperatures of both first and second crystallization peaks, and leads to the improvement of the thermal stability of the amorphous alloys. For the Fe85Si2B8P4Cu0.5Hf0.5 ribbon, after annealing at 623 K, crystallization seeds with sizes of 2–4 nm are found and the initial crystallization has occurred; as the annealing temperature is increased to 723 and 823 K, the size distribution of most of the grains is about 20 nm and bigger than 20 nm, respectively. The Ms of the Fe85Si2B8P4Cu0.5Hf0.5 ribbon is about 154 emu/g, which is obviously lower than 205 emu/g of the Fe85Si2B8P4Cu1 ribbon. However, after annealing at 723 K, the Ms increases to 212 emu/g for the former alloy. The newly developed amorphous/nanocrystalline Fe-Si-B-P-Cu-Hf alloy with excellent soft magnetic properties shows a potential application for substituting partial Si steels.

Keywords

Glass-forming ability Crystallization behavior Exothermic peaks Saturation magnetization Grain sizes 

References

  1. 1.
    Makino, A., He, M., Kubota, T., et al.: New excellent soft magnetic FeSiBPCu nanocrystallized alloys with high Bs of 1.9T from nanohetero-amorphous phase. IEEE Trans. Magn. 45, 4303–4305 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Kubota, T., Makino, A., Inoue, A.: Low core loss of Fe85Si2B8P4Cu1 nanocrystalline alloys with high Bs and B800. J. Alloys Compd. 509, S416–S419 (2011)CrossRefGoogle Scholar
  3. 3.
    Takenaka, K., Setyawan, A.D., Sharma, P., et al.: Industrialization of nanocrystalline Fe-Si-B-P-Cu alloys for high magnetic flux density cores. J. Magn. Magn. Mater. 401, 479–483 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Silveyra, J.M., Illeková, E.: Effect of air annealing on Fe-Si-B-M-Cu (M=Nb, Mo) alloys. J. Alloys Compd. 610, 180–183 (2014)CrossRefGoogle Scholar
  5. 5.
    Sato, K., Takenaka, K., Makino, A., et al.: Structural heterogeneity of the melt-spun (Fe, Co)-Si-B-P-Cu alloy with excellent soft magnetic properties. Phys. Procedia 75, 1376–1380 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Dong, B.S., Zhou, S.X., Hu, M.J., et al.: The influence of Al content on glass forming ability and magnetic properties of high Ms nanocrystalline FeSiBPCuAl alloy. Mater. Lett. 64, 736–738 (2010)CrossRefGoogle Scholar
  7. 7.
    Jafari, S., Beitollahi, A., Eftekhari Yekta, B., et al.: Atom probe analysis and magnetic properties of nanocrystalline Fe84.3Si4B8P3Cu0.7. J. Alloys Compd. 674, 136–144 (2016)CrossRefGoogle Scholar
  8. 8.
    Jafari, S., Beitollahi, A., Eftekhari Yekta, B., et al.: Three-dimensional atom probe analysis and magnetic properties of Fe85Cu1Si2B8P4 melt spun ribbons. J. Magn. Magn. Mater. 401, 1123–1129 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Xu, J., Yang, Y.Z., Li, W., et al.: Effect of P addition on glass forming ability and soft magnetic properties of melt-spun FeSiBCuC alloy ribbons. J. Magn. Magn. Mater. 417, 291–293 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Xu, J., Yang, Y.Z., Li, W., et al.: Effect of Si addition on crystallization behavior, thermal stability and magnetic properties in high Fe content Fe-Si-B-P-Cu-C alloy. Mater. Res. Bull. 97, 452–456 (2018)CrossRefGoogle Scholar
  11. 11.
    Li, Z.Z., Wang, A., Chang, C.T., et al.: Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization. J. Alloys Compd. 611, 197–201 (2014)CrossRefGoogle Scholar
  12. 12.
    Janotova, I., Zigo, J., Svec, P., et al.: Analysis of phase transformations in Fe-(Co)-B-Si-(P). J. Alloys Compd. 643, S265–S269 (2015)CrossRefGoogle Scholar
  13. 13.
    Wang, A.D., Men, H., Shen, B.L., et al.: Effect of P on crystallization behavior and soft-magnetic properties of Fe83.3Si4Cu0.7P12-xPx nanocrystalline soft-magnetic alloys. Thin Solid Films 519, 8283–8286 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Movahedi, B., Enayati, M.H., Wong, C.C.: Study on nanocrystallization and amorphization in Fe-Cr-Mo-B-P-Si-C system during mechanical alloying. Mater. Sci. Eng. B 172, 50–54 (2010)CrossRefGoogle Scholar
  15. 15.
    Song, H.Y., Liu, H.T., Lu, H.H., et al.: Effect of hot rolling reduction on microstructure, texture and ductility of strip-cast grain-oriented silicon steel with different solidification structures. Mater. Sci. Eng. A 605, 260–269 (2014)CrossRefGoogle Scholar
  16. 16.
    Song, H.Y., Liu, H.T., Wang, Y.P., et al.: Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method. J. Magn. Magn. Mater. 426, 32–39 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Sharma, P., Zhang, X., Zhang, Y., et al.: Competition driven nanocrystallization in high Bs and low coreloss Fe–Si–B–P–Cu soft magnetic alloys. Scr. Mater. 95, 3–6 (2015)CrossRefGoogle Scholar
  18. 18.
    Aksa, Z., Aizawa, S., Shindo, D., Sharma, P., Makino, A.: In-situ Lorentz microscopy of Fe85Si2B8P4Cu1 nanocrystalline soft magnetic alloys. J. Magn. Magn. Mater. 375, 10–14 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. Zhou
    • 1
  • G. T. Wang
    • 1
  • L. B. Zheng
    • 1
  • Y. Z. Yang
    • 1
  1. 1.Faculty of Materials and EnergyGuangdong University of TechnologyGuangzhouChina

Personalised recommendations