Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 11, pp 3545–3551 | Cite as

Spin State of Cobalt and Electrical Transport Mechanism in MgCo2O4 System

  • Arooj Fatima SyedaEmail author
  • Muhammad Nasir Khan
Original Paper


MgCo2O4 samples were synthesized by inverse co-precipitation method. The formation of a single-phase spinel structure was confirmed by X-ray diffraction measurements and Fourier-transform infrared spectroscopy. The samples crystallized in a face-centered cubic structure with Fd-3m space group as revealed from the Rietveld refinement of X-ray diffraction data. Magnetic measurements carried out in a broad temperature range of 5–300 K showed antiferromagnetic to paramagnetic phase transition (Neel temperature) observed at 101 K. Magnetic susceptibility data fitted using the Curie Weiss law and effective Bohr magnetic moment (μeff) for Co atoms was determined. Calculated μeff comes out to be 3.05 μB. These results were correlated to the spin states of Co3+ atoms. A small hysteresis in the field-dependent magnetization MH loop taken at 5 K indicates the existence of weak ferromagnetism in this system. The electrical resistivity measurement in the temperature range 77–750 K displayed the semiconducting-like behavior for this system.


Spinel structure Co-precipitation Diffraction Susceptibility Hysteresis 


  1. 1.
    Che, X., Li, L., Li, G.: Exploration of spin state and exchange integral of cobalt ions in stoichiometric ZnCo2O4 spinel oxides. Appl. Phys. Lett. 108, 143102 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Gu, D., Jia, C.-J., Weidenthaler, C., Bongard, H.-J., Spliethoff, B., Schmidt, W., Schuth, F.: Highly ordered mesoporous cobalt-containing oxides: structure, catalytic properties, and active sites in oxidation of carbon monoxide. J. Am. Chem. Soc. 137, 11407 (2015)CrossRefGoogle Scholar
  3. 3.
    Wang, G., Meng, Y., Wang, L., Xia, J., Zhu, F., Zhang, Y.: Yolk-shell Co3O4-CoO/carbon composites for lithium-ion batteries with enhanced electrochemical properties. Int. J. Electrochem. Sci. 12, 2618 (2017)CrossRefGoogle Scholar
  4. 4.
    Vetter, S., Haffer, S., Wagner, T., Tiemann, M.: Nanostructured Co3O4 as a CO gas sensor: temperature-dependent behavior. Sens. Actuator B-Chem. 206, 133 (2015)CrossRefGoogle Scholar
  5. 5.
    Blakemore, J.D., Gray, H.B., Winkler, J.R., Muller, A.M.: Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal. 3, 2497 (2013)CrossRefGoogle Scholar
  6. 6.
    Farhadi, S., Safabakhsh, J., Zaringhadam, P.: Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. J. Nanostructure Chem. 3, 69 (2013)CrossRefGoogle Scholar
  7. 7.
    Roth, W.L.: The magnetic structure of Co3O4. J. Phys. Chem. Solids 25, 1 (1964)ADSCrossRefGoogle Scholar
  8. 8.
    Chen, W., Chen, C., Guo, L.: Field-dependent low-field enhancement in effective paramagnetic moment with nanoscaled Co3O4. J. Appl. Phys. 108, 073907 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Ravi, G.: Magnetic evolution in transition metal-doped Co3−xMxO4 (M = Ni, Fe, Mg and Zn) nanostructures. Appl. Phys. A 122, 177 (2016)ADSGoogle Scholar
  10. 10.
    Ghione, E., Mescia, D., Fino, D., Russo, N., Saracco, G., Specchia, V.: Design of catalyst for the decomposition of N2O(2006)Google Scholar
  11. 11.
    Sharma, Y., Sharma, N., Subba Rao, G.V., Chowdari, B.V.R.: Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ion. 179, 587 (2008)CrossRefGoogle Scholar
  12. 12.
    Krishnan, S.G., Reddy, M.V., Harilal, M., Vidyadharan, B., Misnon, I.I., Ab Rahim, M.H., Ismail, J., Jose, R.: Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim. Acta 161, 312 (2015)CrossRefGoogle Scholar
  13. 13.
    Yagi, S., Ichikawa, Y., Yamada, I., Doi, T., Ichitsubo, T., Matsubara, E.: Synthesis of binary magnesium–transition metal oxides via inverse coprecipitation. Jpn. J. Appl. Phys. 52, 025501 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  15. 15.
    Young, R.A.: The Rietveld Method. Oxford University Press, London (1996)Google Scholar
  16. 16.
    Gene, S.A., Saion, E., Shaari, A.H., Kamarudin, M.A., Al-Hada, N.M., Kharazmi, A.: Structural, optical, and magnetic characterization of spinel zinc chromite nanocrystallines synthesised by thermal treatment method. J. Nanomater. 2014, 7 (2014). Article ID 416765CrossRefGoogle Scholar
  17. 17.
    Kumar, L., Kumar, P., Narayan, A., Kar, M.: Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int. Nano Lett. 3, 8 (2013)CrossRefGoogle Scholar
  18. 18.
    Krezhov, K., Konstantinov, P.: On the cationic distribution in MgxCo3−xO4 spinels. J. Phys.: Condens. Matter 4, L543 (1992)ADSGoogle Scholar
  19. 19.
    Sun, D., Wang, M.X., Zhang, Z.H., Tao, H.L., He, M., Song, B., Li, Q.: Effects of inverse degree on electronic structure and electron energy-loss spectrum in zinc ferrites. Solid State Commun. 223, 12 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Kamioka, N., Ichitsubo, T., Uda, T., Imashuku, S., Taninouchi, Y.-k., Matsubara, E.: Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity. Mater. Trans. JIM 49, 824 (2008)CrossRefGoogle Scholar
  21. 21.
    Sattar, A., El-Sayed, H., El-Shokrofy, K., El-Tabey, M.: Improvement of the magnetic properties of Mn-Ni-Zn ferrite by the non magnetic Al-ion substitution. J. Applied Sci 3, 162 (2005)Google Scholar
  22. 22.
    Prasad, R., Singh, P.: Low temperature complete combustion of a lean mixture of LPG emissions over cobaltite catalysts. Catal. Sci. Tech. 3, 3223 (2013)CrossRefGoogle Scholar
  23. 23.
    Tseng, C.-C., Lee, J.-L., Liu, Y.-M., Ger, M.-D., Shu, Y.-Y.: Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors. J. Taiwan Inst. Chem. Eng. 44(3), 415–419 (2013)CrossRefGoogle Scholar
  24. 24.
    Deraz, N., Abd-Elkader, O.H.: Investigation of magnesium ferrite spinel solid solution with iron-rich composition. Int. J. Electrochem. Sci 8, 9071 (2013)Google Scholar
  25. 25.
    Ashiq, M.N., Ehsan, M.F., Iqbal, M.J., Gul, I.H.: Synthesis, structural and electrical characterization of Sb3+ substituted spinel nickel ferrite (NiSbxFe2−xO4) nanoparticles by reverse micelle technique. J. Alloys Compd. 509, 5119 (2011)CrossRefGoogle Scholar
  26. 26.
    Aravind, G., Raghasudha, M., Ravinder, D.: Electrical transport properties of nano crystalline Li–Ni ferrites. J. Materiomics 1, 348 (2015)CrossRefGoogle Scholar
  27. 27.
    Richter, C., van der Pluijm, B.A.: Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. Phys. Earth Planet. Inter. 82, 113 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    Durán, A., Arévalo-López, A.M., Castillo-Martínez, E., García-Guaderrama, M., Moran, E., Cruz, M.P., Fernández, F., Alario-Franco, M.A.: Magneto-thermal and dielectric properties of biferroic YCrO3 prepared by combustion synthesis. J. Solid State Chem. 183, 1863 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Guillou, F., Bréard, Y., Hardy, V.: Cobalt spin state above the valence and spin-state transition in (Pr0.7 Sm0.3)0.7 Ca0.3 CoO3. Solid State Sci. 24, 120 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Raghavender, A.T., Hong, N.H., Lee, K.J., Jung, M.-H., Skoko, Z., Vasilevskiy, M., Cerqueira, M.F., Samantilleke, A.P.: Nano-ilmenite FeTiO3: synthesis and characterization. J. Magn. Magn. Mater. 331, 129 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Zhu, W., Wang, M., Seradjeh, B., Yang, F., Zhang, S.: Enhanced weak ferromagnetism and conductivity in hole-doped pyrochlore iridate Y2Ir2O7. Phys. Rev. B 90, 054419 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Vasundhara, K., Achary, S.N., Deshpande, S.K., Babu, P.D., Meena, S.S., Tyagi, A.K.: Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys. 113, 194101 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Bhat, M.A., Zargar, R., Modi, A., Arora, M., Gaur, N.K.: Structural, electrical and magnetic features of Kagomé, YBaCo4O7 system. Mater. Sci-Poland 34, 786 (2016)CrossRefGoogle Scholar
  34. 34.
    Retuerto, M., Li, M.-R., Stephens, P.W., Sánchez-Benítez, J., Deng, X., Kotliar, G., Croft, M.C., Ignatov, A., Walker, D., Greenblatt, M.: Half-metallicity in Pb2CoReO6 double perovskite and high magnetic ordering temperature in Pb2CrReO6 perovskite. Chem. Mater. 27, 4450 (2015)CrossRefGoogle Scholar
  35. 35.
    Zhao, H., Cao, L., Song, Y., Feng, S., Shen, X., Ni, X., Yao, Y., Wang, Y., Jin, C., Yu, R.: Structure, magnetic and electrical properties of disordered double perovskite Pb2CrMoO6. Solid State Commun. 204, 1 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CDL, Physics DivisionPINSTECHIslamabadPakistan

Personalised recommendations