Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3297–3305 | Cite as

Effects of La Doping and Zn or O Vacancy on the Magnetic Property of ZnO

  • W. L. Li
  • Q. Y. Hou
  • X. F. Jia
  • Z. C. Xu
Original Paper

Abstract

Research on the magnetic origin and mechanism of La-doped ZnO system has been controversial. To solve this problem, we studied the effects of La doping and Zn or O vacancy on the magnetic property of ZnO using geometry optimization and energy calculation on the basis of first-principle generalized gradient approximation method of density functional theory. The electronic structures and magnetic properties of undoped ZnO, La-doped ZnO system, and systems with coexisting La doping and Zn or O vacancies were calculated. Results showed that the systems of La-doped ZnO and the coexistence of La doping and O vacancy are nonmagnetic. In addition, the system of La replacing Zn and one Zn vacancy exhibits long-range orderly ferromagnetism, and the Curie temperature of the doping system can achieve room temperature. The magnetism source of the systems with La doping and Zn vacancy coexisting in ZnO demonstrates strong hybrid coupling electron exchange effects existing among Zn-4s, Zn-3p, O-2p, and La-5s orbits that are nearest to the Zn vacancy. The next nearest distance between doping and Zn vacancy leads to the lowest formation energy and highest stability under the same doping condition.

Keywords

La doping Vacancy Room temperature ferromagnetism First-principles 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61366008 and 61664007).

References

  1. 1.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-Blende magnetic semiconductors. Science. 287, 1019–1022 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Tate, N., Kawazoe, T., Nomura, W., Ohtsu, M.: Current-induced giant polarization rotation using a ZnO single crystal doped with nitrogen ions. Sci. Rep. 5, 12762 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Yu, Q., Ai, T.T., Jiang, L.Y., Zhang, Y.T., Li, C., Yuan, X.Q.: Efficient energy transfer in Eu-doped ZnO on diamond film. RSC Adv. 4, 53946–53949 (2014)CrossRefGoogle Scholar
  4. 4.
    Dubey, D.K., Singh, D.N., Kumar, S., Nayak, C., Kumbhakar, P., Jha, S.N., Bhattacharya, D., Ghoshc, A.K., Chatterjee, S.: Local structure and photocatalytic properties of sol–gel derived Mn–Li co-doped ZnO diluted magnetic semiconductor nanocrystals. RSC Adv. 6, 22852–22867 (2016)CrossRefGoogle Scholar
  5. 5.
    Lü, Y.Y., Zhou, Q., Chen, L., Zhan, W.W., Xie, Z.X., Kuang, Q., Zheng, L.S.: Templated synthesis of diluted magnetic semiconductors using transition metal ion-doped metal–organic frameworks: the case of Co-doped ZnO. Cryst. Eng. Comm. 18, 4121–4126 (2016)CrossRefGoogle Scholar
  6. 6.
    Shi, T.F., Xiao, Z.G., Yin, Z.J., Li, X.H., Wang, Y.Q., He, H.T., Wang, J.N., Yan, W.S., Wei, S.Q.: The role of Zn interstitials in cobalt-doped ZnO diluted magnetic semiconductors. Appl. Phys. Lett. 96, 211905 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Pan, F., Song, C., Liu, X.J., Yang, Y.C., Zeng, F.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R. 62, 1–35 (2008)CrossRefGoogle Scholar
  8. 8.
    Lee, H.J., Jeong, S.Y., Cho, C.R., Park, C.H.: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81, 4020–4022 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Justice, B.H. Jr., Westrum, E.F.: Thermophystcal properties of the lanthanide oxides. I. Heat capacities, thermodynamic properties, and some exergy levels of lanthanum(II1) and neodymium(III) oxides from 5 to 350 K. J. Phys. Chem. 67, 339–345 (1963)CrossRefGoogle Scholar
  10. 10.
    Zhang, X.J., Mi, W.B., Wang, X.C., Bai, H.L.: First-principles prediction of electronic structure and magnetic ordering of rare-earth metals doped ZnO. J. Allo. Comp. 617, 828–833 (2014)CrossRefGoogle Scholar
  11. 11.
    El Hachimi, A.G., Zaari, H., Benyoussef, A., El Yadari, M., El Kenz, A.: First-principles prediction of the magnetism of 4f rare-earth-metal-doped wurtzite zinc oxide. J. Rare Earth. 32, 715–721 (2014)CrossRefGoogle Scholar
  12. 12.
    Young, S.L., Chen, H.Z., Kao, M.C., Kung, C.Y., Lin, C.C., Lin, T.T., Horng, L., Shih, Y.T., Ou, C., Lin, C.H.: Magnetic properties of La-doped and Cu-doped ZnO nanowires fabricated by hyderothermal method. Int. J. Mod. Phys. B 27, 1362006 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Kanoun, M.B., Goumri-Said, S., Schwingenschlögl, U., Manchon, A.: Magnetism in Sc-doped ZnO with zinc vacancies: a hybrid density functional and GGA + U approaches. Chem. Phys. Lett. 532, 96–99 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Yan, W.S., Sun, Z.H., Liu, Q.H., Li, Z.R., Pan, Z.Y., Wang, J., Wei, S.Q., Wang, D., Zhou, Y.X., Zhang, X.Y.: Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO. Appl. Phys. Lett. 91, 062113 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Patterson, C.H.: Role of defects in ferromagnetism in Zn1−xCoxO: a hybrid density-functional study. Phys. Rev. B 74, 144432 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Galland, D., Herve, A.: ESR Spectra of the zinc vacancy in ZnO. Phys. Lett. A 33, 1–2 (1970)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, Q., Sun, Q., Chen, G., Kawazoe, Y., Jena, P.: Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77, 205411 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Lan, Z.H., Miao, X.J.: Research on the magnetism of yttrium doped zinc oxide film. Appl. Mech. Mater. 513-517, 70–73 (2014)CrossRefGoogle Scholar
  19. 19.
    Ma, X.G., Wu, Y., Lv, Y.H., Zhu, Y.F.: Correlation effects on lattice relaxation and electronic structure of ZnO within the GGA + U formalism. J. Phys. Chem. C 117, 26029–26039 (2013)CrossRefGoogle Scholar
  20. 20.
    He, H.Y., Huang, J.F., Fei, J., Lu, J.: La-doping content effect on the optical and electrical properties of La-doped ZnO thin films. J. Mater. Sci: Mater Electrons. 26, 1205–1211 (2015)Google Scholar
  21. 21.
    Shakir, M., Faraz, M., Asif Sherwani, M., Al-Resayes, S.I.: Photocatalytic degradation of the paracetamol drug using lanthanum doped ZnO nanoparticles and their in-vitro cytotoxicity assay. J. Lumin. 176, 159–167 (2016)CrossRefGoogle Scholar
  22. 22.
    Lan, W., Liu, Y.P., Zhang, M., Wang, B., Yan, H., Wang, Y.Y.: Structural and optical properties of La-doped ZnO films prepared by magnetron sputtering. Mater. Lett. 61, 2262–2265 (2007)CrossRefGoogle Scholar
  23. 23.
    Sorescu, M., Diamandescu, L., Tarabsanu-Mihaila, D., Teodorescuv, V.S.: Nanocrystalline rhombohedral In2O3 synthesized by hydrothermal and postannealing pathways. J. Mater. Sci. 39, 675–677 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Wardle, M.G., Goss, J.P., Briddon, P.R.: Theory of Li in ZnO: a limitation for Li-based p-type doping. Phys. Rev. B 71, 155205 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Li, H.L., Lv, Y.B., Li, J.Z., Yu, K.: Experimental and first-principles studies of structural and optical properties of rare earth (RE = La, Er, Nd) doped ZnO. J. Allo. Comp. 617, 102–107 (2014)CrossRefGoogle Scholar
  26. 26.
    Pickett, W.E., Moodera, J.S.: Half metallic magnets. Phys. Today. 54, 39–44 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Fan, J.C., Sreekanth, K.M., Xie, Z., Chang, S.L., Rao, K.V.: p-Type ZnO materials: theory, growth, properties and devices. Prog. Mater. Sci. 58, 874–985 (2013)CrossRefGoogle Scholar
  28. 28.
    Wang, T.W., Bristowe, P.D.: Controlling Ag diffusion in ZnO by donor doping: a first principles study. Acta. Mater. 137, 115–122 (2017)CrossRefGoogle Scholar
  29. 29.
    Zener, C.: Interaction between the d-Shells in the transition metals. II. Ferromagnetic Compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)ADSCrossRefGoogle Scholar
  30. 30.
    Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.A., Fukushima, T., Kizaki, H., Zeller, R.: First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633–1690 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Jayachandraiah, C., Krishnaiah, G.: Influence of cerium dopant on magnetic and dielectric properties of ZnO nanoparticles. J. Mater. Sci. 52, 7058–7066 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceInner Mongolia University of TechnologyHohhotChina
  2. 2.Inner Mongolia Key Laboratory of Thin Film and CoatingsHohhotChina
  3. 3.College of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotChina

Personalised recommendations