Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3339–3346 | Cite as

Calculations of the Structural, Elastic, Magnetic, and Electronic Properties of the New Compound BaZr0.5Mn0.5O3 with Tetragonal Structure

  • Fatma Temmar
  • Abdelkader Boudali
  • Fatima Driss Khodja
  • Hayat Moujri
  • Abderrahmane Semmeq
Original Paper
  • 35 Downloads

Abstract

Based on the density functional theory, we have calculated the structural properties of the BaZrO3 (BZO) cubic structure with PBE-GGA, PBEsol-GGA, and LDA approximations. The equilibrium lattice constant within GGA-PBEsol (a = 4.1847 Å) is in very good agreement with the experimental data (Holland and Redfern, Miner. Mag. 61: 65, 1997). The calculations of elastic properties of pure and doped BaZrO3 are calculated with PBEsol-GGA; both BZO and BZM are compressible and show a brittle nature. According to calculated electronic and magnetic properties, it is found that Mn-doped BaZrO3 system is a half metallic and exhibits a ferromagnetic character. The total magnetic moment of the cell is equal to3.57 µB; this value comes from manganese atom (Mn) with a value of 3.176 µB. The magnetic moments of barium, oxygen, and zirconium atoms are approximately equal to zero.

Keywords

Perovskite BaZrO3 Supercell Wien2k Elastics constants Electronic properties Magnetic moment 

References

  1. 1.
    Walsch, A., Sokol, A., Catlow, R.: Energy Storage: Rechargeable Lithium Batteries. In: Computational Approaches to Energy Materials. Wiley, New York (2013)Google Scholar
  2. 2.
    Kuklja, M.M., Kotomin, E.A., Merkle, R., Mastrikov, Y.A., Maier, J.: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 5443–5471 (2013)CrossRefGoogle Scholar
  3. 3.
    Donnerberg, H.J.: Atomic Simulations of Electrooptical and Magnetooptical Materials. Springer Tracts in Modern Physics. Springer, Berlin (1999)Google Scholar
  4. 4.
    Sundell, P.G., Bjorketun, M.E., Wahnstrom, G.: Phys. Rev. B 73, 104112 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Haile, M., Staneff, G., Ryu, K.H.: Mater. Sci. 36, 1149 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Heifets, E., Ho, J., Merinov, B.: Phys. Rev. B 75, 155431 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Tao, S., Irvine, J.T.S.: J. Solid State Chem. 180, 3493 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Ahmed, I., Eriksson, S.-G., Ahlberg, E., Knee, C.S., Götlind, H., Johansson, L.-G., Karlsson, M., Matic, A., Börjesson, L.: Structural study and proton conductivity in Yb-doped BaZrO3. Solid State Ion. 178, 515 (2007)CrossRefGoogle Scholar
  9. 9.
    Bohn, H.G., Schober, T.: J. Am. Ceram. Soc. 83, 768 (2000)CrossRefGoogle Scholar
  10. 10.
    Schneller, T., Schober, T.: Solid State Ion. 164, 131 (2003)CrossRefGoogle Scholar
  11. 11.
    Babilo, P., Uda, T., Haile, S.M.: J. Mater. Res. 22, 1322 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Kreuer, K.D.: Solid State Ion. 125(1–4), 285 (1999)CrossRefGoogle Scholar
  13. 13.
    Ahmad, T., Ubaidullah, M., Shahazad, M., Kumar, D., Al-Hartomy, O.A.: Materials Chemistry and Physics 1–8 (2016)Google Scholar
  14. 14.
    Ahmed, I., Eriksson, S.G., Ahlberg, E., Knee, C.S., Karlsson, M., Matic, A., Engberg, D., Börjesson, L.: Solid State Ion. 177, 2357–2362 (2006)CrossRefGoogle Scholar
  15. 15.
    Iwahara, H., Yajima, T., Hibino, T., Ozaki, K., Suzuki, H.: Solid State Ion 61, 65–9 (1993)CrossRefGoogle Scholar
  16. 16.
    Nowick, A.S., Du, Y., Liang, K.C.: Solid State Ion 125, 303–11 (1999)CrossRefGoogle Scholar
  17. 17.
    Goldschmidt, W.: Geochemiste Verteilungegesetze der Element VII VIII, 1927 (1928)Google Scholar
  18. 18.
    Majid, A., Khan, A., Javed, G., Mirza, A.M.: Comput. Mater. Sci. 50, 363–372 (2010)CrossRefGoogle Scholar
  19. 19.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Hvasnicka, D., Luitz, J.: Vienna university of technology austria (2001)Google Scholar
  20. 20.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Perdew, J.P., Wang, Y.: Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Phys. Rev. Lett. 100, 136406 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Birch, F.: Phys. Rev. 71, 809–824 (1947)ADSCrossRefGoogle Scholar
  24. 24.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188–5192 (1976)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Jamal, M., Reshak, A.H.: Tetra-elastic. Available from: http://www.wien2k.at/reguser/unsupported/
  26. 26.
    Voigt, W.: Over the relationship between the two elasticity constants of isotropicbodies. Ann. Phys. 38, 573–587 (1889)CrossRefGoogle Scholar
  27. 27.
    Reuss, A., Angew, Z.: Math. Phys. 9, 49–58 (1929)Google Scholar
  28. 28.
    Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London 65, 349–354 (1952)ADSCrossRefGoogle Scholar
  29. 29.
    Simmons, G., Wang, H.: MIT Press, Cambridge (1971)Google Scholar
  30. 30.
    Hector, L.G. Jr., Herbst, J.F., Capehart, T.W.: J Alloys Compd. 353, 74 (2003)CrossRefGoogle Scholar
  31. 31.
    Ganeshan, S., Shang, S.L., Wang, Y., Liu, Z.K.: Acta Mater. 57, 3876 (2009)CrossRefGoogle Scholar
  32. 32.
    Christman, J.R.: Fundamentals of Solid State Physics. Wiley Press, New York (1988)Google Scholar
  33. 33.
    Sun, Z., Li, S., Ahuja, R., Schneide, J.M.: Solid State Commun. 129, 589–592 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    Hao, A., Yang, X., Wang, X., Yu, R., Liu, X., Xin, W., Liu, R.: Comput. Mater. Sci. 48, 59–64 (2010)CrossRefGoogle Scholar
  35. 35.
    Jansiukiewicz, C., Karpus, V.: Solid State Commun. 128, 167–169 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Verma, A.S., Jindal, V.L.: J. Alloys compd 485–514 (2009)Google Scholar
  37. 37.
    Holland, T.J.B., Redfern, S.A.T.: Miner. Mag. 61, 65 (1997)CrossRefGoogle Scholar
  38. 38.
    Yamanaka, S., Fujikane, M., Hamaguchi, T., Muta, H.: J. Alloys Compd. 359, 109–113 (2003)CrossRefGoogle Scholar
  39. 39.
    Youn, S.J., Min, B.I.: Phys. Rev. B 56, 19 (1997)CrossRefGoogle Scholar
  40. 40.
    Jonker, G.H., Van Santen, J.H.: Phys. (Amsterdam) 16, 337 (1950)ADSCrossRefGoogle Scholar
  41. 41.
    Grimvall, G.: Thermophysical Properties of Materials. North Holland: ElsevierGoogle Scholar
  42. 42.
    Wang, J., Yip, S., Phillpot, S.R., Wolf, D.: Phys. Rev. Lett. 71, 4182–4185 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    Born, M., Hung, K.: Dynamical Theory of Crystal Lattice. Clarendon, Oxford (1954)Google Scholar
  44. 44.
    Pugh, S.F.: Philos. Mag. 45, 823–843 (1954)CrossRefGoogle Scholar
  45. 45.
    Haines, J., Leger, J.M., Bocquillon, G.: Annu. Rev. Mater. Res. 3, 1–23 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    Christen, H.M., Specht, E.D., Silliman, S.S., Harshavardhan, K.S.: Phys. Rev. B rapid communication (2003)Google Scholar
  47. 47.
    Robertson, J.: J Vacuum Sci. Technol. B 18.3, 1785–1791 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    Hamada, N., Sawada, H., Terakura, K.: J. Phys. Chem. Solids 56, 1719 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    Iles, N., Kellou, A., Driss Khodja, K., Amrani, B., Lemoigno, F., Bourbie, D., Aourag, H.: Comput. Mater. Sci. 39, 896–902 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Physico-Chemical StudiesUniversity of Dr Moulay TaharSaidaAlgeria
  2. 2.Laboratory of the Condensed Matter Physics, Faculty of Sciences Ben M’SikHassan II University of CasablancaCasablancaMorocco

Personalised recommendations