Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3245–3250 | Cite as

Enhanced Magnetoresistance in In-Plane Monolayer MoS2 with CrO2 Electrodes

  • Abhishek Kumar
  • Sudhanshu Choudhary
Original Paper

Abstract

Magnetoresistance of monolayer MoS2 is reported to increase when used in in-plane configuration with CrO2 half-metal ferromagnet (HMF) electrodes. Density functional theory (DFT)- and non-equilibrium Green’s function (NEGF)-based simulations show that high magnetoresistance (MR) values of ∼860% can be achieved in in-plane monolayer MoS2 with CrO2 electrodes, which is much higher than the MR value of ∼300% for nine-layer and the MR value of ∼70% for single-layer out-of-plane MoS2 reported in Dolui et al., Phys. Rev. B 90(R), 041401 (2014) past by other researchers. High spin-injection efficiency ∼100% is also obtained at high bias voltages. High MR and perfect spin filtration suggests the importance of this configuration in spintronics applications.

Keywords

Monolayer MoS2 Half-metallic ferromagnet (HMF) Magnetoresistance (MR) Spin-injection efficiency 

References

  1. 1.
    Dolui, K., Narayan, A., Rungger, I., Sanvito, S.: Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions. Phys. Rev. B 90(R), 041401 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Felser, C., Fetcher, G.H., Balke, B.: Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. 46(5), 668–699 (2007)CrossRefGoogle Scholar
  3. 3.
    Fert, A.: Origin, development, and future of spintronics (Nobel Lecture). Angew. Chem. 47(32), 5956–5967 (2008)CrossRefGoogle Scholar
  4. 4.
    Zǔtic, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Yao, K.L., Min, Y., Liu, Z.L., Cheng, H.G., Zhu, S.C., Gao, G.: First-principles study of transport of V doped boron nitride nanotube. Phys. Lett. A 372(34), 5609–5613 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Titus, E., Krishna, R., Gracio, J., Singh, M.: Antonio Luis Ferreira and Ricardo G Dias, Carbon nanotube based magnetic tunnel junctions (MTJs) for spintronics spplication, electronic properties of carbon nanotube, InTech (2011),  https://doi.org/10.5772/16539 Google Scholar
  7. 7.
    Chakraverty, M., Kittur, H.M., Arun Kumar, P.: First principle simulations of various magnetic tunnel junctions for applications in magnetoresistive random access memories. IEEE Trans. Nanotechnol. 6, 12 (2013)Google Scholar
  8. 8.
    Choudhary, S., Goyal, R.: First-principles study of spin transport in CrO2–graphene–CrO2 magnetic tunnel junction R. J. Supercond. Nov. Magn. 29, 139 (2016)CrossRefGoogle Scholar
  9. 9.
    Choudhary, S., Varshney, M.: First-principles study of spin transport in CrO2–CNT–CrO2 magnetic tunnel junction M. J. Supercond. Nov. Magn. 28, 3141 (2015)CrossRefGoogle Scholar
  10. 10.
    Kuc, A., Heine, T.: The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chem. Soc. Rev. 44, 2603–2614 (2015)CrossRefGoogle Scholar
  11. 11.
    Yao, Y., Ye, F., Qi, X.-L., Zhang, S.-C., Fang, Z.: Spin-orbit gap of graphene: first-principles calculations. Phys. Rev. B 75(R), 041401 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C., Fabian, J.: Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Tan, W., Hunley, P., St. Omer, I.: Properties of silicon carbide nanotubes formed via reaction of SiO2 powder with SWCNTs and MWCNTs, ResearchGate (2009).  https://doi.org/10.1109/SECON.2009.5174082
  14. 14.
    Radisavljevic, B., Kis, A.: Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Yin, Z.Y., Li, H., Jiang, L., Shi, Y.M., Sun, Y.H., Lu, G., Zhang, Q., Chen, X.D., Zhang, H.: Single-layer MoS2 phototransistors. ACS Nano 6, 74 (2012)CrossRefGoogle Scholar
  16. 16.
    Sundaram, R.S., Engel, M., Lombardo, A., Krupke, R., Ferrari, A.C., Avouris, P., Steiner, M.: Electroluminescence in single layer MoS2. Nano Lett. 13, 1416 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Perkins, F.K., Friedman, A.L., Cobas, E., Campbell, P.M., Jernigan, G.G., Jonker, B.T.: Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Jin, W., Yeh, P.-C., Zaki, N., Zhang, D., Sadowski, J.T., Al-Mahboob, A., van der Zande, A.M., Chenet, D.A., Dadap, J.I., Herman, I.P., Sutter, P., Hone, J., Osgood, R.M. Jr.: Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology 7, 699–712 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Wu, W., De, D., Chang, S.–C., Wang, Y., Peng, H., Bao, J., Pei, S.S.: High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl. Phys Lett. 102, 142106 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Sarkar, D., Liu, W., Xie, X., Anselmo, A.C., Mitragotri, S., Banerjee, K.: MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4), 3992–4003 (2014)CrossRefGoogle Scholar
  23. 23.
    Prasanna Kumar, S., Sandeep, P., Choudhary, S.: Changes in transconductance(gm) and Ion/Ioff with high-K dielectrics in MX2 monolayer 10 nm channel double gate n-MOSFET. Superlattice. Microstruct. 111, 642–648 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Schwarz, K.-H.: CrO2 predicted as a half-metallic ferromagnet. J. Phys. F: Met. Phys. 16, L211 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    Hanbicki, A.T., Jonker, B.T., Itskos, G., Kioseoglou, G., Petrou. A.: Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys Lett. 80, 1240 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Jacob, C.R., Reiher, M.: Spin in density-functional theory. Int. J. Quantum Chem. 112, 36613684 (2012)CrossRefGoogle Scholar
  27. 27.
    Novoselov, K.S., et al.: Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Nowak, J., Rauluszkiewicz, J.: Spin dependent electron tunneling between ferromagnetic films. J. Magn. Magn. Mater. 109(1), 79–90 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    Choudhary, S., Qureshi, S.: Theoretical study on transport properties of a BN co-doped SiC nanotube. Phys. Lett. A 375(38), 3382–3385 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Poklonski, N.A., Ratkevich, S.V., Vyrko, S.A., Kislyakov, E.F., Bubel, O.N., Popov, A.M., Lozovik, Y.E., Hieu, N.N., Viet, N.A.: Structural phase transition and bandgap of uniaxially deformed (6,0) carbon nanotube. Chem. Phys. Lett., 545,71–77 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Singh, A.K., Choudhary, S.: Understanding the spin transport in H2O-adsorbed graphene-based magnetic tunnel junction. J. Supercond. Novel Magn. 29(11), 2947–2951 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of TechnologyKurukshetraIndia

Personalised recommendations