Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 10, pp 3209–3215 | Cite as

Flux Pinning-Induced Stress in a Long Hollow Cylindrical Superconductor Restricted by a Metal Tube

  • Yufeng Zhao
  • Chi Xu
Original Paper

Abstract

The tensile stress in a hollow cylindrical superconductor completely restricted by a metal tube in a parallel magnetic field is investigated. Using the plane strain approach, analytical expressions for the stress distribution of the superconductor and the contact stress between the metal tube and the superconductor are obtained and show that both the ratio of Young’s modulus and thickness ratio of the high-temperature superconductors and the metal tube significantly affect the stress distribution in the superconductor explicitly. In addition, the flux pinning-induced stress in the above-mentioned superconductor is systematically studied by the exponential critical state model during the field cooling process. The results indicate that the metal tube can reduce effectively the tensile stress in the hollow cylindrical superconductor during the magnetization process. The findings suggest that the appropriate selection of material parameters and size of the metal tube can improve superconductor performance efficiently.

Keywords

Tensile stress Metal tube Exponential model Hollow cylindrical superconductor 

Notes

Acknowledgements

This research was supported by the fund of Natural Science Foundation of China (No. 11662009), Natural Science Foundation of Gansu Province (No. 17JR5RA129), and the Fundamental Research Funds for the Universities of Gansu Province.

References

  1. 1.
    Durrell, J. H., Dennis, A.R., Jaroszynski, J., Ainslie1, M.D., Palmer, K.G.B., Shi, Y.H., Campbell, A.M., Hull, J., Strasik, M., Hellstrom, E.E., Cardwell, D.: A trapped field of 17.6T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel. Supercond. Sci. Technol. 27, 082001 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Lalitha, S.L.: Low resistance splices for HTS devices and applications. Cryogenics 86, 7 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Mahmood, A., Chu, Y.S., Sung, T.H.: Enhancement of critical current density of liquid-infiltration-processed Y–Ba–Cu–O bulk superconductors using milled Y2BaCuO5 powder. Supercond. Sci. Technol. 25, 045008 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Rene, F.: Overview of superconductivity and challenges in applications. Rev. Accel. Sci. Technol. 5, 1 (2012)CrossRefGoogle Scholar
  5. 5.
    Feng, X., Gao, G., Davey, K., Werst, M., Hebner, R., Weinstein, R., Parks, D., Sawh, R.: Radial flux high temperature superconductor motor using bulk trapped field magnets. Electric Machines and Drives Conference, 2009. IEMDC ’09. IEEE International IEEE., pp. 458 (2009)Google Scholar
  6. 6.
    Ren, Y., Weinstein, R., Liu, J., Sawh, R.P., Foster, C.: Damage caused by magnetic pressure at high trapped field in quasi-permanent magnets composed of melt-textured Y-Ba-Cu-O superconductor. Physica C. 251, 15 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Johansen, T.H.: Flux-pinning-induced stress and magnetostriction in bulk superconductors. Supercond. Sci. Technol. 3, 121 (2000)CrossRefGoogle Scholar
  8. 8.
    Johansen, T.H.: Flux-pinning-induced stress and strain in superconductors: case of a long circular cylinder. Phys. Rev. B. 60, 9690 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Johansen, T.H., Wang, C., Chen, Q.Y., Chu, W.K.: Enhancement of tensile stress near a hole in superconducting trapped-field magnets. J. Appl. Phys. 88, 2730 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Yong, H.D., Zhou, Y.H.: Flux pinning induced stress and magnetostriction in a long elliptic cylindrical superconductor. J. Appl. Phys. 114, 2533 (2013)CrossRefGoogle Scholar
  11. 11.
    Zeng, J., Wang, X., Wu, H., Xue, F., Zhu, J.: Kim model for flux-pinning-induced stress in a long cylindrical superconductor. AIP Adv. 6, 225 (2016)CrossRefGoogle Scholar
  12. 12.
    Zeng, J., Zhou, Y.H., Yong, H.D.: Kim model for stress distribution in a hollow cylindrical superconductor. Physica C. 469, 822 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Yang, Y.: Corrigendum: Impact of viscous flux flow on the stresses in long cylindrical superconductors. Supercond. Sci. Technol. 27, 059501 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Yang, Y., Zheng, X.J.: Radial and hoop compressive stresses in a long cylindrical superconductor with viscous flux flow. J. Supercond. Nov. Magn. 28, 2255 (2015)CrossRefGoogle Scholar
  15. 15.
    Feng, W.J., Ma, P, Li, Q.H., Liu, J.X.: Flux-pinning-induced magnetostriction and stress in a transversely isotropic thin superconducting disk with a concentric small hole. J. Supercond. Nov. Magn. 26, 539 (2013)CrossRefGoogle Scholar
  16. 16.
    Feng, W.J., Gao, S.W.: Flux-pinning-induced stresses in a hollow superconducting cylinder with flux creep and viscosity properties. Physica C. 500, 14 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Tomita, M., Murakami, M., Katagiri, K.: Reliability of mechanical properties for bulksuperconductors with resin impregnation. Physica C. 378, 783 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Matsui, M., Sakai, N., Murakami, M., Osamura, K.: Mechanical properties of Nd -Ba -Cu -O bulk superconductors. Supercond. Sci. Technol. 16, 1086 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Yang, X.B., Tu, S.T.: The effect of a constraining metal tube on flux pinning induced stress in a long cylindrical superconductor. J. Appl. Phys. 112, 30 (2012)Google Scholar
  20. 20.
    Ikuta, H., Kishio, K., Kitazawa, K.: Critical state models for flux-pinning-induced magnetostriction in type-II superconductors. J. Appl. Phys. 76, 4776 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouChina
  2. 2.School of ScienceLanzhou University of TechnologyLanzhouChina

Personalised recommendations