Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2661–2667 | Cite as

First-Principles Investigation of Magnetic Properties and Faraday Rotation of Co Doping CdTe

  • A. Ait RaissEmail author
  • Y. Sbai
  • L. Bahmad
  • A. Benyoussef
Original Paper


In this paper, we aimed to study the effect of doping of the compound CdTe with the cobalt impurity (Co), as well as the vacancy defects in Cd sites. On one hand, this leads to the investigation of the magnetic properties and the Faraday rotation effect for the studied alloy, doped with different concentrations of cobalt (0.01, 0.05, 0.1, 0.15, 0.2, 0.25). On the other hand, we have created 0.01 of vacancy defects in Cd sites. Then, we raised the vacancy defect concentration to 0.05, keeping the same concentrations of cobalt. As a result, we have investigated that there is a magnetism appearing with the cobalt doping, while the vacancy defects in Cd sites affect the stability of the magnetic states. In general, it improves the ferromagnetic state that will be well explained in the discussion. Our calculations were performed using the KKR-CPA method within the spin-polarized density functional theory (DFT) with the local density approximation (LDA). The curves of the density of states (DOS) illustrate the results of this study which has been discussed, analyzed, and explained below. In addition, the energy of each case was calculated and given in the tables below for both the DLM (half of the cobalt spins are up while the other half are down) and the ferromagnetic state in order to confirm which one of them is stable.


Cd1−xyCoxVacyTe Ab initio study KKR-CPA method Density functional theory (DFT) Density of states (DOS) 


  1. 1.
    Sharma, V.K., Xalxo, R., Varma, G.D.: Cryst. Res. Technol. 42, 34 (2007)CrossRefGoogle Scholar
  2. 2.
    Sbai, Y., Ait Raiss, A., Salmani, E., Bahmad, L., Benyoussef, A.: JMMM 396, 153 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Tamargo, M.C., Cavus, A., Zeng, L., Dai, N., Bambha, N., Gray, A., Semendy, F., Krystek, W., Pollak, F.H.: J. Electron. Mater. 25, 259 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    Maksimov, O., Guo, S.P., Tamargo, M.C.: Appl. Phys. Lett. 78, 2473 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Furdyna, K.: J. Appl. Phys. 64, 29 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    Kossut, J., Beer, A.C., Furdyna, K.: Diluted Magnetic Semiconductors Semiconductors and Semimetals, vol. 25. Academic, New York (1988)Google Scholar
  7. 7.
    Sato, K., et al.: First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633–1690 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Jain, M., Robbins, J.L.: Aterial preparation, crystal structure and the energy gap of diluted magnetic semiconductors. In: Jain, M. (ed.) Diluted Magnetic Semiconductors, p 13. World Science Publishing Co. Pvt. Ltd, Singapore (1991)Google Scholar
  9. 9.
    Sato, K: Crystal growth and characterization of magnetic semiconductors. In: Sato, K., Furukawa, Y., Nakajima, K. (eds.) Advances in Crystal Growth Research, p 303. Elsevier, Amsterdam (2001)Google Scholar
  10. 10.
    Ohno, Y., Young, D.K., Beschoten, B., Matsukura, F., Ohno, H., Awschalom, D.D.: Nature (London) 402, 790 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Furdyna, J.K.: J. Appl. Phys. 64, R29 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Ferrand, D., Wasiela, A., Tatarenko, S., Cibert, J., Richter, G., Grabs, P., Schmidt, G., Molenkamp, L.W., Dietl, T.: Sol. Stat. Commun. 119, 237 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Haury, A., Wasiela, A., Arnoult, A., Cibert, J., Tatarenko, S., Dietl, T., Merle d’Aubigné, Y.: Phys. Rev. Lett. 79, 511 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Ferrand, D., Cibert, J., Bourgognon, C., Tatarenko, S., Wasiela, A., Fishman, G., Bonanni, A., Sitter, H., Kolesnik, S., Jaroszynski, J., Barcz, A., Dietl, T.: J. Cryst. Growth 214, 387 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Ait Raiss, A., Sbai, Y., Bahmad, L., Benyoussef, A.: JMMM 385, 295 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Ait Raiss, A., Sbai, Y., Zarhri, Z., Bahmad, L., Benyoussef, A.: J. Supercond. Nov. Magn. (2015).
  17. 17.
    Takano, F., et al.: Phys. E. 40, 1166 (2008)CrossRefGoogle Scholar
  18. 18.
    Merad, A.E., et al.: J. Magn. Magn. Mat. 302, 536 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Touat, S.A. et al.: Physica B 405, 625 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Ahn, J.-Y., et al.: J. Magn. Magn. Mat. 226–230(Part 2), 1995 (2001)CrossRefGoogle Scholar
  21. 21.
    Becke, A.D.: Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    Mouruzzi, V.L., Janak, J.F., Williams, A.R.: Properties of Metals. Pergramon, New York (1998)Google Scholar
  23. 23.
    Madelung, O, Schulz, M. (eds.): Numerical Data and Functional Relationships in Science and Technology. New Series. Group III: Crystal and Solid State Physics. Seconductors. Supplements and Extensions to Volume III/17. Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds, Vol. 22a. Springer, Berlin (1982)Google Scholar
  24. 24.
    Gaj, J.A., Planel, R., Fishman, G.: Sol. Stat. Commun. 29, 861 (1984)Google Scholar
  25. 25.
    Savchuk, A.I, Gavaleshko, M.P, Lyakhovich, A.M: Magnetooptical effects induced by exchange interaction in diluted magnetic semiconductors. IEEE Trans. Magn. 29(6) (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMcSI), Faculty of SciencesMohammed V UniversityRabatMorocco
  2. 2.Hassan II Academy of Science and TechnologyRabatMorocco

Personalised recommendations