Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2355–2361 | Cite as

The Ideal Strengths of Superconducting MgCNi3 and CdCNi3

  • Xianshi Zeng
  • Huijun Wan
  • Siling Guo
  • Qingdong Gou
  • Donglan Wu
  • Yufeng WenEmail author
  • Lili Liu
Original Paper


The stress-strain curves under tensile deformation in the 〈100〉, 〈110〉, and 〈111〉 directions and under shear deformation in the (001)〈110〉, \((110)\langle \overline {1}10\rangle \), \((111)\langle 1\overline {1}0\rangle \), and \((111)\langle 11\overline {2}\rangle \) slip systems have been systematically calculated by first-principles method to study the ideal strengths of superconducting MgCNi3 and CdCNi3. The ideal strengths in the three tensile directions are found to be reduced in the order of 〈100〉 → 〈110〉 → 〈111〉 and those for the four shear slip systems in the order of \((110)\langle \overline {1}10\rangle \rightarrow (111)\langle 11\overline {2}\rangle \rightarrow (111)\langle 1\overline {1}0\rangle \rightarrow (001)\langle 110\rangle \) for both superconductors. Their lowest ideal tensile strengths are found to be larger than the corresponding highest ideal shear strengths, which could explain why both superconductors have the ductility. The obtained lattice constants and elastic properties coincide well with the the available experimental and theoretical values.


MgCNi3 CdCNi3 Ideal strength First-principles 



The work is supported by the Natural Science Foundation of China (51661013, 11564019, 11464020), the PhD Start-up Fund of Natural Science Foundation of Jinggangshan University(JZB15007), and the Science and Technology Research Program of Chongqing Municipal Education Commission (KJ1710252).


  1. 1.
    He, T., Huang, Q., Ramirez, A.P., Wang, Y., Regan, K.A., Rogado, N., Hayward, M.A., Hass, M.K., Slusky, J.S., Inumaru, K., Zandbergen, H.W., Ong, N.P., Cava, R.J.: Superconductivity in the non-oxide perovskite MgCNi3. Nature 411, 54–54 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Kumar, R.S., Cornelius, A.L., Shen, Y., Geetha Kumary, T., Janaki, J., Valsakumar, M.C., Nicol, M.F.: Structural behavior of non-oxide perovskite superconcuctor MgCNi3 at pressures up to 32 GPa. Phys. B: Condens. Matter 363, 190–195 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Zhou, B., Wang, R.J., Zhang, Y.L., Li, F.Y., Yu, R.C., Jin, C.Q.: Elastic properties of MgCNi3 superconductor under hydrostatic pressure. Chin. J. High Press. Phys. 17, 157 (2003)Google Scholar
  4. 4.
    Uehara, M., Yamazaki, T., Kôri, T., Kahida, T., Kimishima, Y., Hase, I.: Superconducting properties of CdCNi3. J. Phys. Soc. Jpn. 76, 034714–034718 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Feng, H., Wu, X., Gan, L., Wang, R., Wei, Q.: The elastic constants and anisotropy of superconducting MgCNi3 and CdCNi3 under different pressure. J. Supercond. Nov. Magn. 27, 1187–1194 (2014)CrossRefGoogle Scholar
  6. 6.
    Shein, I.R., Bannikov, V.V., Ivanovskii, A.L.: Structural, elastic and electronic properties of superconducting anti-perovskites MgCNi3, ZnCNi3 and CdCNi3 from first principles. Physica C 468, 1–6 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Wu, S.Q., Hou, Z.F., Zhu, Z.Z.: Elastic properties and electronic structures of CdCNi3: a comparative study with MgCNi3. Solid State Sci. 11, 251–258 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Zhang, W., Chen, X.R., Cai, L.C., Jing, F.Q.: Elastic and electronic properties of perovskite type superconductor MgCNi3 under pressure. J. Phys.: Condens. Matter 20, 325228–325234 (2008)Google Scholar
  9. 9.
    Vaitheeswaran, G., Kanchana, V., Svane, A., Delin, A.: Elastic properties of MgCNi3–a superconducting perovskite. J. Phys.: Condens. Matter 19, 326214–326219 (2007)Google Scholar
  10. 10.
    Shein, I.R., Ivanovskii, A.L.: Electronic and elastic properties of non-oxide anti-perovskites from first principles: Superconducting CdCNi3 in comparison with magnetic InCNi3. Phys. Rev. B 77, 104101 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Bağcl, S., Duman, S., Tütüncü, H.M., Srivastava, G.P.: Ground state, phonon spectrum, and superconducting properties of the nonoxide perovskite CdCNi3. Phys. Rev. B 78, 174504 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Roundy, D., Krenn, C.R., Cohen, M.L. Jr., Morris, J.W.: Ideal shear strengths of fcc aluminum and copper. Phys. Rev. Lett. 82, 2713–2716 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Roundy, D., Krenn, C.R., Cohen, M.L. Jr., Morris, J.W.: Ideal strength of tungsten. Philos. Mag. A 81, 1725–1747 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Clatterbuck, D.M., Chrzan, D.C., Morris, J.W. Jr.: The ideal strength of iron in tension and shear. Acta Mater. 51, 2271–2283 (2003)CrossRefGoogle Scholar
  15. 15.
    Zhang, M., Lu, M., Du, Y., Gao, L., Lu, C., Liu, H.: Hardness of FeB4: Density functional theory investigation. J. Chem. Phys. 140, 174505 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Li, Y., Hao, J., Liu, H., Lu, S., Tse, J.S.: High energy density and superhard nitrogen-rich B-N compounds. Phys. Rev. Lett. 115, 105502 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, M., Liu, H., Li, Q., Gao, B., Wang, Y., Li, H., Chen, C., Ma, Y.: Superhard BC3 in cubic diamond structure. Phys. Rev. Lett. 114, 015502 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Li, Q., Liu, H., Zhou, D., Zheng, W., Wu, Z., Ma, Y.: Novel low compressible and superhard carbon nitride: Body-centered tetragonal CN2. Phys. Chem. Chem. Phys. 14, 13081–13087 (2012)CrossRefGoogle Scholar
  19. 19.
    Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Kresse, G., Furthmller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  21. 21.
    Kresse, G., Furthmller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Le Page, Y., Saxe, P.: Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 65, 104104–104117 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Wu, X., Vanderbilt, D., Hamann, D.R.: Systematic treatment of displacements, and electric fields in density-functional perturbation theory. Phys. Rev. B 72, 035105–035117 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Voigt, W.: Lehrbuch der kristallphysik. Taubner, Leipzig (1928)zbMATHGoogle Scholar
  30. 30.
    Teter, D.M.: Computational alchemy: the search for new superhard materials. MRS Bull. 23, 22–27 (1998)CrossRefGoogle Scholar
  31. 31.
    Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104–224107 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)CrossRefGoogle Scholar
  33. 33.
    Frantsevich, I.N., Voronov, F.F., Bokuta, S.A. In: Frantsevich, I. (ed.) : pp 60–180. Kiev, Naukova Dumka (1983)Google Scholar
  34. 34.
    Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)CrossRefGoogle Scholar
  35. 35.
    Tvergaard, V., Hutchinson, J.W.: Microcracking in ceramics induced by thermal expansion or elastic anisotropy. J. Am. Ceram. Soc. 71, 157–166 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    Zener, C.: Elasticity and anelasticity of metals. University of Chicago, Chicago (1984)Google Scholar
  37. 37.
    Gutkin, M.Y., Ishizaki, T., Kuramoto, S., Ovidko, I.A.: Nanodisturbances in deformed gum metal. Acta Mater. 54, 2489–2499 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Xianshi Zeng
    • 1
    • 4
  • Huijun Wan
    • 1
  • Siling Guo
    • 1
  • Qingdong Gou
    • 1
  • Donglan Wu
    • 1
  • Yufeng Wen
    • 1
    • 2
    • 3
    Email author
  • Lili Liu
    • 5
  1. 1.Institute of Atomic, Molecular Physics and Functional MaterialsJinggangshan UniversityJi’anPeople’s Republic of China
  2. 2.Department of Applied PhysicsJinggangshan UniversityJi’anPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringShanghai Jiaotong UniversityShanghaiPeople’s Republic of China
  4. 4.Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  5. 5.Department of PhysicsChongqing Three Gorges UniversityWanzhouPeople’s Republic of China

Personalised recommendations