Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2431–2436 | Cite as

A FirstPrinciple Study on the Magnetic Properties of Ag, Al, Li, Mg, and NaDoped ReS2 Monolayers

  • M. LuoEmail author
  • Y. E. Xu
Original Paper


Magnetic properties of ReS2 monolayer doped with nonmagnetic metals (Ag, Al, Li, Mg, and Na) are studied by the first-principle method Different dopants and doping sites are considered. Similar to transition metal (TM) atoms, magnetic behavior appears in Al and Mg-doped systems. On the other hand, the calculated binding energies show that the Al-doped system has a more stable-formed system than the Mg-doped system. Hence, we study the ferromagnetic interaction in two Al-doped ReS2 monolayers. Interestingly, as the Al–Al distance increases, both ferromagnetic (FM) and nonmagnetic (NM) states are found. Our results deem that the FM coupling originates from a p-d exchange-like p-p coupling interaction.


2D-ReS2 Nonmagnetic metal FM interaction DFT calculations 


Funding Information

We thank the Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University (ECNU). Our work is supported by the Supercomputer Center of ECNU.


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Geim, K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805–136807 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Rodin, S., Carvalho, A., Castro Neto, A.H.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801–176803 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Low, T., Rodin, A.S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., Castro Neto, A.H.: Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90, 075434–074538 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Fei, R., Faghaninia, A., Soklaski, R., Yan, J.A., Lo, C.C., Yang, L.: Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Ramasubramaniam, A., Muniz, A.R.: Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Phys. Rev. B 90, 085424–085429 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, J., Yang, G.F., Sun, R., Yan, P.F., Lu, Y.N., Xue, J.J., Chen, G.Q.: A study on the electronic and interfacial structures of monolayer ReS2-metal contacts. Phys. Chem. Chem. Phys 39, 27052–27058 (2017)CrossRefGoogle Scholar
  11. 11.
    Tongay, S., Sahin, H., Ko, H.C., Luce, A., Fan, W., Liu, K., Zhou, J., Huang, Y.S., Ho, C.H., Yan, J.Y., Ogletree, D.F., Aloni, S., Ji, J., Li, S.S., Li, J.B., Peeters, F.M., Wu, J.Q.: Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252–3257 (2014)CrossRefGoogle Scholar
  12. 12.
    Shim, J., Oh, A., Kang, D.H., Oh, S., Jang, S.K., Jeon, J., Jeon, M.H., Kim, M., Choi, C., Lee, J.: High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by Oxygen plasma treatment. Adv. Mater. 32, 6985–6990 (2016)CrossRefGoogle Scholar
  13. 13.
    Zhang, E, Jin, Y.B., Yuan, X., Wang, W.Y., Zhang, C., Tang, L., Liu, S.S., Zhou, P., Hu, W.D., Xiu, F.X.: ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 26, 4076–4082 (2015)CrossRefGoogle Scholar
  14. 14.
    Corbett, C.M., McClellan, C., Rai, A., Sonde, S.S., Tutuc, E., Banerjee, S.K.: Field effect transistors with current saturation and voltage gain in ultrathin ReS2. ACS Nano. 9, 363–370 (2015)CrossRefGoogle Scholar
  15. 15.
    Liu, E.F., Fu, Y, Wang, Y., Feng, Y., Liu, H., Wan, X., Zhou, W., Wang, B., Shao, L., Ho, C.H., Huang, Y.S., Cao, Z., Wang, L., Li, A., Zeng, J., Song, F., Wang, X., Shi, Y., Yuan, H.T., Hwang, H.Y., Cui, Y., Miao, F., Xing, D.Y.: Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 6, 6991–6997 (2015)CrossRefGoogle Scholar
  16. 16.
    Luo, M., Shen, Y.H., Yin, T.L.: Structural, electronic, and magnetic properties of transition metal doped ReS2 monolayer. JETP Lett. 105, 255–259 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Alaal, N., Loganathan, V., Medhekar, N., Shukla, A.: First principles many-body calculations of electronic structure and optical properties of SiC nanoribbons. J. Phys. D: Appl. Phys. 49, 105306–105314 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Javan, M.B.: Electronic and magnetic properties of monolayer SiC sheet doped with 3d-transition metals. J. Magn. Magn. Mater. 401, 656–661 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Wu, Y., Zhou, L.P., Du, X.Z., Yang, Y.P.: Near-field radiative heat transfer between two SiC plates with/without coated metal films. J. Nanosci. Nanotechno. 15, 3017–3024 (2015)CrossRefGoogle Scholar
  20. 20.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Liu, L., Yu, P.Y., Ma, Z., Mao, S.S.: Ferromagnetism in GaN:Gd: a density functional theory study. Phys. Rev. Lett 100, 127203–127206 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Kitchen, D., Richardella, A., Tang, J.M., Flatte, M.E., Yazdani, A.: Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Polytechnic UniversityShanghaiChina
  2. 2.Department of Electronic EngineeringShang Hai Jian Qiao UniversityShanghaiChina

Personalised recommendations