Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2491–2500 | Cite as

Strong Correlation Effect in Ferrimagnetic Half-Metallic V2CoAl and V2CoGa Heusler Compounds

  • Fares Faid
  • Mokhtar ElchikhEmail author
  • Soumia Bahlouli
  • Karima Kaddar
Original Paper


We present first-principles calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method to investigate the structural, elastic, electronic, and magnetic properties of the Heusler compounds V2CoAl and V2CoGa. We explore different magnetic configurations in both regular and inverse Heusler structures: the Cu2MnAl-type and Hg2CuTi-type structures respectively. Our compounds are found to be ferrimagnets in the inverse Heusler structure. To take into account the effects of the strong correlation among the localized d-states, we perform a calculation using the GGA+U method (the general gradient approximation with the Hubbard on-site Coulomb correction U). Then we show that both compounds exhibit a half-metallic character and have a magnetic moment of 2.00 μB per formula unit. This latter statement is coherent with the generalized Slater-Pauling rule (SP). In terms of the band structure calculations, we explain the formation of the indirect energy band gaps in the spin-majority channels. We also use the mean-field approximation (MFA) to discuss the magnetic exchange couplings and predict the Curie temperature for both compounds.


Heuslers V2CoAl V2CoGa FP-LAPW GGA+U Ferrimagnetic Half-metallic MFA Curie temperature 



We are grateful to Professors M. Ferhat and M. Meinert for their helpful discussions and suggestions on the topic of this paper and to Professor J.-M. Richard for comments on the manuscript. We also thank the unknown reviewers for their valuable remarks and comments. Part of the calculations were conducted on USTOMB IBN BAJA and ENPO UCI Al-Farabi Supercomputers.


  1. 1.
    Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Phys. Rev. B 39, 4828 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Baibich, M.N., Broto, J.M., Fert, A., et al.: Phys. Rev. Lett. 61, 2472 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 20, 2024 (1983)CrossRefGoogle Scholar
  4. 4.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Phys. Rev. B 66, 134428 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Phys. Rev. B 66, 174429 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Galanakis, I., Mavropoulos, Ph., Dederichs, P.H.: J. Phys. D 39, 765–775 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Kervan, S., Kervan, N.: Curr. Appl. Phys. 13, 80–83 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Birsan, A.: Curr. Appl. Phys. 14, 1434–1436 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Heusler, F.: Verh. Dtsch. Phys. Ges. 5, 219 (1903)Google Scholar
  10. 10.
    Özdoǧan, K., Galanakis, I.: J. Magn. Magn. Mater. 321, L34–L36 (2009)CrossRefGoogle Scholar
  11. 11.
    Chen, X.Q., Podloucky, R., Rogl, P.: J. Appl. Phys. 100, 113901 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Xing, N., Li, H., long, R.D., Zhan, C.: Comput. Mater. Sci. 42, 600–605 (2008)CrossRefGoogle Scholar
  13. 13.
    Scharma, V., Solanki, A.K., Kasshyap, A.: J. Magn. Magn. Mater 322, 2922–2928 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Kanbur, U., Gokoglu, G.: J. Magn. Magn. Mater 323, 1156–1160 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Meinert, M., Schmalhorst, J.-M., Reiss, G.: J. Phys.: Condens Matter 23, 116005 (2011)ADSGoogle Scholar
  16. 16.
    Zhang, X.M., Dai, X.F., Chen, G.F., Liu, H.Y., Luo, H.Z., Li, Y., Wang, W.H., Wu, G.H., Liu, G.D.: Comput. Mater. Sci 59, 1–5 (2012)CrossRefGoogle Scholar
  17. 17.
    Zhang, X.M., Xu, G.Z., Du, Y., Liu, E.K., Liu, H.Z., Liu, G.D., Wang, W.H., Wu, G.H.: EPL (Europhys. Let) 104, 27012 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Skaftouros, S., Özdoǧan, K., Şaşioǧlu, E., Galanakis, I.: Phys. Rev B87, 024420 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Jia, H.Y., Dai, X.F., Zhang, X.M., Wang, L.Y., Chen, L., Wanga, F., Jia, M., Liu, G.D.: J. Magn. Magn. Mater 343, 268–275 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Meinert, M., Geisler, M.P.: J. Magn. Magn. Mater 341, 72–74 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Wollmann, L., Chadov, S., Kübler, J., Felser, C.: Phys. Rev. B 90, 214420 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Ouardi, S., Fecher*, G.H., Felser, C.: Phys. Rev. Lett. 110, 100401 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Kervan, N., Kervan, S.: Solid State Commun. 151, 1162–1164 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Kervan, S., Kervan, N.: J. Phys. Chem. Solids 72, 1358–1361 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Ahmadian, F., Salary, A.: Intermetallics 46, 243–249 (2014)CrossRefGoogle Scholar
  26. 26.
    Slater, J.C.: Phys. Rev. 49, 931 (1936)ADSCrossRefGoogle Scholar
  27. 27.
    Pauling, L.: Phys. Rev. 54, 899 (1938)ADSCrossRefGoogle Scholar
  28. 28.
    Friedel, J.: Il Nuovo Cim. 7, 287 (1958)ADSCrossRefGoogle Scholar
  29. 29.
    Kübler, J.: Physica B+C 127, 257 (1984)ADSCrossRefGoogle Scholar
  30. 30.
    Zhang, L., Wang, X.T., Rozale, H., Gao, Y.C., Wang, L.Y., Chen, X.B.: Curr. Appl. Phys. 15, 1117–1123 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Liechtenstein, A.I., Katsnelson, M.I., Antropov, P.V., Gubanov, A.V.: J. Magn. Magn. Mater. 67, 65 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    Koelling, D.D., Arbman, G.O.: J. Phys. F: Met. Phys. 5, 2041–53 (1975)ADSCrossRefGoogle Scholar
  33. 33.
    Elk version 3.1.12
  34. 34.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    Anisimov, V.I., Aryasetiawan, R., Lichtenstein, A.I.: J. Phys. Condens. Matter 9, 767 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    Kandpal, H.C., Fecher, G.H., Felser, C.: J. Phys. D: Appl. Phys. 40, 15071523 (2007)Google Scholar
  37. 37.
    Kandpal, H.C.: PhD thesis. Gutenberg-University of Johannes, Mainz (2007)Google Scholar
  38. 38.
    Ebert, H., Ködderitzsch, D., Minár, J.: Rep. Prog. Phys. 74, 096501 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    The Munich SPR-KKR package, version 6.3 Ebert H et al.
  40. 40.
    Kübler, J., Williams, A.R, Sommers, C.B.: Phys. Rev. B 28, 1745 (1983)ADSCrossRefGoogle Scholar
  41. 41.
    Anderson, P.W: theory of magnetic exchange interactions: exchange in insulators and semiconductors, Solid State Physics Vol. 14, ed. F. Seitz and D. Turnbull, Academic Press, New York (1963)Google Scholar
  42. 42.
    Şaşioǧlu, E., Sandratskii, L.M., Bruno, P.: J. Phys.: Condens. Matter. 17, 995 (2005)Google Scholar
  43. 43.
    Kundu, A., Ghosh, S., Banerjee, R., Ghosh, S., Sanyal, B.: Scienfic Reports 7(1803), 1–13 (2017)Google Scholar
  44. 44.
    Galanakis, I., Tirpanci, S., Özdoǧan, K., Şaşioglǔ, E.: Phys. Rev. B 94, 064401 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Murnaghan, F.D.: Proc. Nat. Acad. Sci. of U.S.A. 30, 244–247 (1944)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Koepernik, K., Eschrig, H.: Phys. Rev. B 59, 1743 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    Koepernik, K., Velicky, B., Hayn, R., Eschrig, H.: Phys. Rev. B 58, 6944 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    Rached, H., Rached, D., Khenata, R., Reshak, A.H., Rabah, M.: Phys. Status Solidi B 246(7), 1580–1586 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Born, M., Huang, K.: Dynamical Theory and Experiment, vol. I. Springer, Berlin (1982)Google Scholar
  50. 50.
    Soolen, R.J., et al.: Science 282(5386), 85–88 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    Wurmehl, S., Fecher, G.H., Kandpal, H.C., Ksenofontov, V., Lin, H.J., Morais, J., Felser, C.: Phys. Rev. B 72, 184434 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    Abada, A., Amara, K., Hiadsi, S., Amrani, B.: J. Magn. Magn. Mater. 388, 59–67 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratoire de Physique des Matériaux et des Fluides, Faculté de PhysiqueUniversité des Sciences et de la Technologie d’OranBir El DjirAlgeria

Personalised recommendations