Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 31, Issue 8, pp 2465–2483 | Cite as

High-Pressure and Temperature Dependence of Electronic, Magnetic, Elastic, Thermodynamic, and Transport Properties of Full-Heusler Alloys Co2YIn (Y = Nb, Zr)

  • Dinesh C. Gupta
  • Sukriti Ghosh
Original Paper
  • 73 Downloads

Abstract

Structural, elastic, magnetic, and electronic properties of Co2YIn (Y = Nb, Zr) have been investigated by means of the full-potential linearized augmented plane wave along with generalized gradient approximation + U/modified Becke-Johnson method in the stable Fm-3m phase. The optimized equilibrium lattice parameter in stable phase is 6.1744 Å for Co2NbIn and 6.2824 Å for Co2ZrIn. We have calculated the spin-resolved density of states for both the alloys to show that the ferromagnetic behavior of Co2NbIn is due to the exchange splitting of Co and Nb atoms and due to Co and Zr in Co2ZrIn. In spin-up configuration, there is absence of energy gap while an energy gap can be seen in spin-down state for both the alloys exhibiting a half-metallic character. Through the elastic constants and their discussions, we have predicted the elastic behavior of the materials. The quasi-harmonic approximations have been employed to study the pressure- and temperature-dependent thermodynamic properties. The Boltzmann theory is employed to investigate the electronic transport properties of these alloys. The defined material properties may pay as a prime stand for the application of material in spintronics and thermoelectrics.

Keywords

Elastic constants Electronic properties Magnetism Thermodynamic properties Transport properties Band structure 

References

  1. 1.
    Webster, J., Ziebeck, K.R.A.: J. Phys. Chem. Solids 34, 1647 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    Coey, J.M.D., Venkatesan, M., Bari, M.A.: In: Bertheir, C., et al. (eds.) Lecture Notes in Physics, vol. 595. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Gupta, D.C., Bhat, I.H.: J. Magn. Magn. Mater. 374, 209 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Gupta, D.C., Bhat, I.H.: J. Alloys Compd. 575, 292 (2013)CrossRefGoogle Scholar
  5. 5.
    Khandy, S.A., Gupta, D.C.: RSC Adv. 6, 48009 (2016)CrossRefGoogle Scholar
  6. 6.
    Bhat, T.M., Gupta, D.C.: RSC Adv. 6, 80302 (2016)CrossRefGoogle Scholar
  7. 7.
    Chauhan, M., Gupta, D.C.: Diam. Relat. Mater. 40, 96 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Khandy, S.A., Gupta, DC: RSC Adv.  https://doi.org/10.1039/C6RA19448F (2016)
  9. 9.
    Bhat, I.H., Yousuf, S., Bhat, T.M., Gupta, D.C.: J. Magn. Magn. Mater. 395, 81 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Hillebrands, B., Felser, C.: Editorial: high spin polarization of Heusler alloys. J. Phys. D: Appl. Phys. 39, 5 (2006)CrossRefGoogle Scholar
  11. 11.
    Galanakis, I., Mabropoulos, Ph., Dederichs, P.H.: J. Phys. D: Appl. Phys. 39, 765 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Kandpal, H.C., Felser, C., Seshadri, R.: J. Phys. D: Appl. Phys. 39, 776 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Attema, J.J., de Wijs, G.A., de Groot, R.A.: J. Phys. D: Appl. Phys. 39, 793 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Kallmayer, M., Elmers, H.J., Balke, B., Wurmehl, S., Emmerling, F., Fecher, G.H., Felser, C.: J. Phys. D: Appl. Phys. 39, 786 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Endo, K., Kanomata, T., Nishihara, H., Ziebeck, K.R.A.: J. Alloys Compd. 510, 1 (2012)CrossRefGoogle Scholar
  16. 16.
    Inomata, K., Okamura, S., Miyazaki, A., Kikuchi, M., Pezuka, N., Wojcik, M., Jedryka, E.: J. Phys. D: Appl. Phys. 39, 816 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Yamamoto, M., Marukame, T., Ishikawa, T., Matsuda, K., Uemura, T., Arita, M.: J. Phys. D: Appl. Phys. 39, 824 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Gupta, D.C., Bhat, I.H.: Mater. Sci. Eng. B 374, 70 (2015)CrossRefGoogle Scholar
  19. 19.
    Gupta, D.C., Bhat, I.H.: Mater. Chem. Phys. 146, 303 (2014)CrossRefGoogle Scholar
  20. 20.
    Felser, C., Fecher G.H., Balke, B.: Angew. Chem. Int. Ed. 46, 668 (2007)CrossRefGoogle Scholar
  21. 21.
    Shutoh, N., Sakurada, S.: J. Alloys Compd. 289, 204 (2005)CrossRefGoogle Scholar
  22. 22.
    Lue, C.S., Kuo, Y.K.: Phys. Rev. B 66, 085121 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Winterlik, J., Fecher, G.H., Felser, C.: Solid State Commun. 145, 475 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Blaha, P., Schwarz, K., Sorantin, P., Tricky, S.B.: Comput. Phys. Commun. 59, 399 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: Wien2K: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystals Properties. Karlheinz Schwarz, Techn. Universitaet Wein, Wein (2001)Google Scholar
  26. 26.
    Schwarz, K., Blaha, P., Madsen, G.K.H.: Comput. Phys. Commun. 147, 71 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Otero-de-la-Roza, A., Abbasi-Perez, D., Luana, V.: Comput. Phys. Commun. 182, 2232 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Blanco, M.A., Francisco, E., Luana, V.: Comput. Phys. Commun. 158, 57 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Marx, D., Hutter, J.: Ab-initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  31. 31.
    Allen, M., Tildesley, D.J.: Computer simulation of liquids. Clarendon, Oxford (1987)zbMATHGoogle Scholar
  32. 32.
    Madsen, G.K.H., Singh, D.J.: Comput. Phys. Commun. 175, 67 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Madsen, G.K.H.: J. Am. Chem. Soc. 128, 12140 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Studies in PhysicsJiwaji UniversityGwaliorIndia
  2. 2.Department of PhysicsGovt. K.R.G. Auto. P.G. CollegeGwaliorIndia

Personalised recommendations