Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Temperature-Independent Performance of an 8-Layer λ ~1.3 μm InAs/GaAs Quantum-Dot Laser

  • 15 Accesses

Abstract

We report high-performance broad-area eight-layer InAs/GaAs quantum-dot lasers (QDLs) emitting at 1.3 μm in the pulse and continuous-wave (CW) operations. Operational characteristics of the fabricated QDLs, including the emission wavelength, output power, threshold-current density, differential quantum efficiency, and characteristic temperature, are investigated at different temperatures. For as-cleaved facets of 100 μm wide and 1 mm cavity-length device, an output power of 100 mW is achieved at 1 kHz with 5% duty cycle and 49 mW in the CW operation. The device exhibits a threshold-current density of 56 A/cm2 at room temperature in both the operating modes and increases to 71 and 80 A/cm2 the in the pulse and CW modes, respectively, at 343 K. Over a temperature range of 298K to 343 K, we calculate the threshold characteristic temperature of 166K and 119K and slope-efficiency characteristic temperature of 2061K and 408K in the pulse and CW modes, respectively. The laser exhibits differential quantum efficiency of 41% and 32% in the pulse and CW mode, respectively. We observed that the device exhibited negligible dependence over a temperature range of 298K to 343 K.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F. Lelarge, B. Dagens, J. Renaudier, et al., IEEE J. Sel. Top. Quantum Electron., 13, 111 (2007).

  2. 2.

    Y. Yang, B. Jo, J. Kim, et al., J. Appl. Phys., 105, 053510 (2009).

  3. 3.

    N. Kirstaedter, N. N. Ledentsov, M. Grundmann, et al., Electron. Lett., 30, 1416 (1994).

  4. 4.

    M. Shtaif and G. Eisenstein, IEEE J. Quantum Electron., 32, 1801 (1996).

  5. 5.

    H. Shoji, Y. Nakata, K. Mukai, et al., Appl. Phys. Lett., 71, 193 (1997).

  6. 6.

    O. B. Shchekin and D. G. Deppe, IEEE Photon. Technol. Lett., 14, 1231 (2002).

  7. 7.

    G. Ozgur, A. Demir, and D. G. Deppe, IEEE J. Quantum Electron., 45, 1265 (2009).

  8. 8.

    Y. Wan, Z. Zhang, R. Chao, et al., Opt. Express, 25, 27715 (2017).

  9. 9.

    X. He, Y. Song, Y. Yu, et al., J. Semicond., 40, 071902 (2019).

  10. 10.

    N. N. Ledentsov, M. Grundmann, F. Heinrichsdorff, et al., IEEE J. Sel. Top. Quantum Electron., 6, 439 (2000).

  11. 11.

    T. Ito, K. Hirai, T. Akiyama, and K. Nakamura, J. Cryst. Growth, 378, 13 (2013).

  12. 12.

    R. Kaida, T. Akiyama, K. Nakamura, and T. Ito, J. Cryst. Growth, 468, 919 (2016).

  13. 13.

    L. C. Lin, C. Y. Chen, H. Huang, et al., Opt. Lett., 43, 210 (2018).

  14. 14.

    A. Kovsh, I. Krestnikov, D. Livshits, et al., Opt. Lett., 32, 793 (2007).

  15. 15.

    S. Fathpour, Z. Mi, and P. Bhattacharya, IEEE Photon. Technol. Lett., 17, 2250 (2005).

  16. 16.

    A. Abdollahinia, S. Banyoudeh, A. Rippien, et al., Opt. Express, 26, 6056 (2018).

  17. 17.

    J. A. Tatum, D. Gazula, L. A. Graham, et al., IEEE Lighwave Technol. , 33, 727 (2015).

  18. 18.

    Q. Z. Li, Y. Q. Huang, J. Q. Ning, et al., Nanoscale Res. Lett., 13, 267 (2018).

  19. 19.

    D. Inoue, D. Jung, J. Norman, et al., Opt. Express, 26, 7022 (2018).

  20. 20.

    J. Wu, S. Chen, A. Seeds, and H. Liu, J. Phys. D: Appl. Phys., 48, 363001 (2015).

  21. 21.

    D. Leonard, S. Fafard, K. Pond, et al., J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct., 12, 2516 (1994).

  22. 22.

    L. V. Asryan and R. A. Suris, Semicond. Sci. Technol., 11, 554 (1996).

  23. 23.

    L. Harris, D. J. Mowbray, M. S. Skolnick, et al., Appl. Phys. Lett., 73, 969 (1998).

  24. 24.

    L. V. Asryan and R. A. Suris, Semiconductors, 38, 1 (2004).

  25. 25.

    F. Heinrichsdorff, M. H. Mao, N. Kirstaed, et al., Appl. Phys. Lett., 71, 22 (1997).

  26. 26.

    H. Liu, T. Wang, Q. Jiang, et al., Nat. Photon., 5, 416 (2011).

  27. 27.

    H. X. Zhao, S. F. Yoon, C. Z. Tong, et al., Nanoscale Res. Lett., 6, 37 (2011).

  28. 28.

    A. Patané, A. Polimeni, M. Henini, et al., J. Appl. Phys., 85, 625 (1999).

  29. 29.

    M. Hsu, G. Lin, P. Pan, et al., IEEE J. Sel. Top. Quantum Electron., 6, 165306 (2000).

  30. 30.

    S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, et al., Semicond. Sci. Technol., 20, 340 (2005).

  31. 31.

    V. Mikhelashvili, O. Eyal, I. Khanonkin, et al., J. Appl. Phys., 124, 054501 (2018).

  32. 32.

    Z. Zhang, D. Jung, J. C. Norman, et al., IEEE J. Sel. Top. Quantum Electron., 25, (2019).

  33. 33.

    T. Numai, Fundamentals of Semiconductor Lasers, 2nd ed., Springer Ser. Opt. Sci., 93, 95 (2015).

Download references

Author information

Correspondence to Devnath Dhirhe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Yelashetty, A., Sharma, A. et al. Temperature-Independent Performance of an 8-Layer λ ~1.3 μm InAs/GaAs Quantum-Dot Laser. J Russ Laser Res (2020). https://doi.org/10.1007/s10946-020-09851-3

Download citation

Keywords

  • semiconductor laser
  • quantum-dot laser
  • characteristic temperature
  • differential quantumefficiency