Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sodium Chloride Concentration Sensor Based on Enhanced Surface Plasmon Resonance by a TiO2–ZnO Composite Film and an Au Nanowire Array using A MoS2–Graphene-Oxide Hybrid Nanosheet

  • 2 Accesses

Abstract

We propose a method for low-concentration detection of sodium chloride based on surface plasmon resonance (SPR). A novel prism coupling structure is designed for the sodium chloride concentration sensor, where a TiO2–ZnO composite film and a MoS2–GO hybrid nanosheet are chosen to enhance the surface plasmon resonance based on an Au nanowire array because of their unique properties in metal nanowire arrays and two-dimensional nanomaterials. Using the finite element method, we analyze the thickness of each medium layer for the structure designed in order to obtain the optimum value, so that the sensitivity of the sodium chloride concentration sensor designed is substantially enhanced. The optimum thickness of each medium layer is given, and the sensitivity of the sodium chloride concentration sensor based on the surface plasmon resonance can reach 0.260°/ (g/100 ml) concentration in the detection range of the sodium chloride concentration from zero to 15 g/100 ml. We derive the relationship between the sodium chloride concentration and the surface plasmon resonance angle in the detection range of the sodium chloride concentration.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. P. Devanarayanan, V. Manjuladevi, and R. K. Gupta, Sensors Actuators B: Chem., 227, 643 (2016).

  2. 2.

    P. P. Vachali, B. Li, A. Bartschi, and P. S. Bernstein, Arch. Biochem. Biophys., 572, 66 (2015).

  3. 3.

    G. Kaur, A. Paliwal, M. Tomar, and V. Gupta, Biosensors Bioelectron., 78, 106 (2016).

  4. 4.

    M. J. Vassar, C. A. Perry, and J. W. Holcroft, J. Trauma, 34, 622 (1993).

  5. 5.

    M. G. Cunha, G. C. Freitas, A. B. Carregaro, et al., Am. J. Vet. Res., 71, 840 (2010).

  6. 6.

    D. Jurkiewicz and P. Rapiejko, Pol. Otolaryngol., 65, 47 (2011).

  7. 7.

    K. Haddadi, H. Bakli, and T. Bakli, J. IEEE Microwave Wireless Compon. Lett., 22, 542 (2012).

  8. 8.

    H. A. Rahman, S. W. Harun, M. Yasin, et al., J. Sensors Actuators A: Phys., 171, 219 (2011).

  9. 9.

    W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature, 424, 824 (2003).

  10. 10.

    P. K. Maharana, S. Bharadwaj, R. Jha, J. Appl. Phys., 114, 014304 (2013).

  11. 11.

    E. Wijaya, C. Lenaerts, S. Maricot, et al., Curr. Opinion Solid State Mater. Sci., 15, 208 (2011).

  12. 12.

    J. Homola, S. S. Yee, and G. Gauglitz, Sensors Actuator B: Chem., 54, 3 (1999).

  13. 13.

    M.V. Sosnova, N. L. Dmitruk, A. V. Korovin, et al., Appl. Phys. B, 99, 493 (2010).

  14. 14.

    E. Simsek, Plasmonics, 4, 223 (2009).

  15. 15.

    M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, et al., Phys. Rev. B, 77, 033417 (2008).

  16. 16.

    Ming-RuYang, Sheng Yuan Chu, RenChuan Chang, Sensors Actuators B: Chem., 122, 269 (2007).

  17. 17.

    K. Min Byun, M. L. Shuler, S. June Kim, et al., J. Lightwave Technol., 26, 1472 (2008).

  18. 18.

    G. Schider, J. R. Krenn, A. Hohenau, et al., Phys. Rev. B, 68, 155427 (2003).

  19. 19.

    H. Yao, J. Duan, D. Mo, et al., J. Appl. Phys., 110, 094301 (2011).

  20. 20.

    J. B. Maurya, Y. K. Prajapati, and R. Tripathi, Silicon, 10, 245 (2018).

  21. 21.

    J. A. Kim, T. Hwang, S. R. Dugasani, et al., Sensors Actuators B: Chem., 187, 426 (2013).

  22. 22.

    Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, ACS Appl. Mater. Interfaces, 7, 21727 (2015).

  23. 23.

    P. Zuppella, S. Tosatto, A. J. Corso et al., J. Opt., 15, 055010 (2013).

  24. 24.

    P. Johari and V. B. Shenoy, ACS Nano, 5, 7640 (2011).

  25. 25.

    S. Shukla and S. Saxena, Appl. Phys. Lett., 98, 1 (2011).

  26. 26.

    F. Ban and S. Majid, Int. J. Electrochem. Sci., 7, 4345 (2012).

  27. 27.

    H. J. Conley, B. Wang, J. I. Ziegler, et al., Nano Lett., 13, 3626 (2013).

  28. 28.

    K. F. Mak, C. Lee, J. Hone, et al., Phys. Rev. Lett., 105, 136805 (2010).

  29. 29.

    Q. Ouyang, S. Zeng, X.-Q. Dinh, et al., Procedia Engin., 140, 134 (2016).

  30. 30.

    K. Roy, M. Padmanabhan, S. Goswami, et al., Nat. Nanotechnol., 8, 826 (2013).

  31. 31.

    Y. Ma, G. T. Du, S. R. Yang, et al., J. Appl. Phys., 95, 6268 (2004).

  32. 32.

    X. L. Cheng, H. Zhao, L. H. Huo, et al., Sensors Actuator B: Chem., 102, 248 (2004).

  33. 33.

    M. Mahanti and D. Basak, Chem. Phys. Lett., 542, 110 (2012).

  34. 34.

    S. Shukla, N. K. Sharm, and V. Sajal, Sensors Actuators B: Chem., 206, 463 (2015).

  35. 35.

    R. Khan, P. Uthirakumar, K.-B. Bae, et al., Mater. Lett., 163, 8 (2016).

  36. 36.

    ¨U. ¨Ozg¨ur, Y. I. Alivov, C. Liu, et al., J. Appl. Phys., 98, 11 (2005).

  37. 37.

    M. Torrell, L. Cunha, M. R. Kabir, et al., Mater. Lett., 64, 2624 (2010).

  38. 38.

    J. H. Park, S. Kim, and A. J. Bard, Nano Lett., 6, 24 (2006).

  39. 39.

    M. G. Manera, G. Leo, M. L. Curri, et al., Sensors Actuator B: Chem., 115, 365 (2006).

  40. 40.

    B.-H. Wu, W.-T. Liu, T.-Y. Chen, et al., Nano Energy, 27, 412 (2016).

  41. 41.

    M. G. Manera, P. D. Cozzoli, M. L. Curri, et al., Synth. Met., 148, 25 (2005).

  42. 42.

    J. Liu, Y. Chen, H. Cai, et al., Mater., 8, 2688 (2015).

  43. 43.

    C. W. Lin, K. P. Chen, C. N. Hsiao, et al., Sensors Actuators B: Chem., 113, 169 (2016).

  44. 44.

    L. S. Hsu, C. S. Yeh, C. C. Kuo, et al., J. Optoelectron. Adv. Mater., 7, 3039 (2005).

  45. 45.

    B. D. Gupta and A. K. Sharma, Sensors Actuators B: Chem., 107, 40 (2005).

  46. 46.

    A. Castellanos-Gomez, N. Agrait, and G. Rubio-Bollinger, Appl. Phys. Lett., 96, 213116 (2010).

  47. 47.

    B. Meshginqalam, M. T. Ahmadi, R. Ismail, and A. Sabatyan, Plasmonics, 12, 1991 (2017).

  48. 48.

    V. K. Singh, B. B. S. Jaswal, V. Kumar, et al., J. Integr. Sci. Technol., 1, 13 (2013).

  49. 49.

    A. Verma, A. Prakash, and R. Tripathi, Opt. Commun., 357, 106 (2015).

  50. 50.

    M. Choi, N. Kim, S. Eom, et al., Thin Solid Films, 587, 43 (2015).

  51. 51.

    J. B. Maurya, Y. K. Prajapati, V. Singh, and J. P. Saini, Appl. Phys. A, 121, 525 (2015).

Download references

Author information

Correspondence to Xiaogang Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Li, Z., Tong, K. et al. Sodium Chloride Concentration Sensor Based on Enhanced Surface Plasmon Resonance by a TiO2–ZnO Composite Film and an Au Nanowire Array using A MoS2–Graphene-Oxide Hybrid Nanosheet. J Russ Laser Res (2020). https://doi.org/10.1007/s10946-020-09850-4

Download citation

Keywords

  • surface plasmon resonance (SPR)
  • sensitivity
  • MoS2 – graphene oxide (GO)
  • TiO2–ZnO
  • sodium chloride concentration, Au nanowire array.