Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 4, pp 321–327 | Cite as

Linear Light Amplifier and Amplification of N-Photon States

  • Vladimir A. Andreev
  • Milena D. Davidović
  • Ljubica D. Davidović
  • Miloš D. Davidović
  • Dragomir M. DavidovićEmail author
Article
  • 7 Downloads

Abstract

We consider a linear quantum amplifier consisting of NA two-level atoms and study the problem of amplification of N-photon states. The N-photon states are associated with N-quantum states of the harmonic oscillator. We show that the process of interaction of the electromagnetic field with atoms can be associated with some transformation of the phase space and functions defined on this phase space. We consider the Husimi functions QN(q, p) of N-quantum states of the harmonic oscillator, which are defined on the phase space, investigate transformation of these functions, and find an explicit form of the density matrix of the amplified N-photon state.

Keywords

quantum amplifier Husimi function harmonic oscillator scaling transform density matrix phase space evolution equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press (1995).Google Scholar
  2. 2.
    M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press (1997).Google Scholar
  3. 3.
    W. P. Schleich, Quantum Optics in Phase Space, Wiley-VCH (2001).Google Scholar
  4. 4.
    E. P. Wigner, Phys. Rev., 40, 749 (1932).ADSCrossRefGoogle Scholar
  5. 5.
    R. J. Glauber, Phys. Rev. Lett., 10, 84 (1963).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    E. C. G. Sudarshan, Phys. Rev. Lett., 10, 277 (1963).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Husimi, Proc. Phys. Math. Soc. Jpn., 22, 264 (1940).Google Scholar
  8. 8.
    Y. J. Kano, J. Math. Phys., 6, 1913 (1965).ADSCrossRefGoogle Scholar
  9. 9.
    S. Carusotto, Phys. Rev., A 11, 1629 (1975).Google Scholar
  10. 10.
    N. B. Abraham and S. R. Smith, Phys.Rev., A 15, 485 (1977).Google Scholar
  11. 11.
    E. B. Rockower, N. B. Abraham, and S. R. Smith, Phys. Rev. A, 17, 1100 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    G. S. Agarwal and K. Tara, Phys. Rev. A, 47, 3160 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Andreev, D. M. Davidović, L. D. Davidović, et al., Theor. Math. Phys., 166:3, 356 (2011).Google Scholar
  14. 14.
    V. A. Andreev, D. M. Davidović, L. D. Davidović, and M. D. Davidović, Phys. Scr., 143, 01400 (2011).Google Scholar
  15. 15.
    V. A. Andreev, D. M. Davidović, L. D. Davidović, and M. D. Davidović, Phys. Scr., 90, 074023 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    V. A. Andreev, D. M. Davidović, L. D. Davidović, and M. D. Davidović, J. Russ. Laser Res., 37, 434 (2016).CrossRefGoogle Scholar
  17. 17.
    V. A. Andreev, D. M. Davidović, L. D. Davidović, et al., Theor. Math. Phys., 192, 1080 (2017).CrossRefGoogle Scholar
  18. 18.
    G. S. Agarwal, S. Chaturvedi, and Amit Rai, Phys. Rev. A, 81, 043843 (2010).Google Scholar
  19. 19.
    W. Feller, An Introduction to Probability Theory and Its Applications, John Willey, New York (1957), Vol. 1.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vladimir A. Andreev
    • 1
  • Milena D. Davidović
    • 2
  • Ljubica D. Davidović
    • 3
  • Miloš D. Davidović
    • 4
  • Dragomir M. Davidović
    • 4
    Email author
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Civil EngineeringUniversity of BelgradeBelgradeSerbia
  3. 3.Institute of PhysicsUniversity of BelgradeBelgradeSerbia
  4. 4.Institute for Nuclear Sciences VinčaUniversity of BelgradeBelgradeSerbia

Personalised recommendations