Journal of Russian Laser Research

, Volume 40, Issue 3, pp 259–264 | Cite as

High-Power Chaotic Green Laser Beam Generated by Perturbing a 520 nm Laser Diode with Optical Feedback

  • Zhenmin ShenEmail author
  • Zhiwen Guo
  • Bingjie Wang
  • Tong Zhao
  • Jianzhong Zhang
  • Menglong Li


We designed a compact and efficient high-power laser that generates chaotic green light by perturbing a 520 nm laser diode with optical feedback. This achieved a continuous output power of 30 mW with a bandwidth of more than 1 GHz and an electrical-to-green conversion efficiency of 6.25%. All possible chaotic states were demonstrated for different diode-driving currents and feedback intensities. The FWHM and the peak side-lobe level (PSL) are affected by the injection current and feedback intensity. The FWHM increases with increasing feedback intensity, and the PSL increases with both injection current and feedback intensity. The compact chaotic laser could be used in underwater detection to suppress backscattering because of its intrinsic intensity modulation at high frequency. We finally found the optimum range of chaotic states for underwater detection, for which the ratio of input current to threshold current is 1.5 : 2.1.


laser diode chaotic laser optical feedback backscattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. K. Rumbaugh, E. M. Bollt, and W. D. Jemison, Oceans, 40, 933957 (2013).Google Scholar
  2. 2.
    D. W. Illig, L. K. Rumbaugh, M. K. Banavar, et al., Oceans, 43, 933957 (2015).Google Scholar
  3. 3.
    L. K. Rumbaugh, M. K. Banavar, and W. D. Jemison, Proc. SPIE, 9459, ?? (2015).Google Scholar
  4. 4.
    L. J. Mullen, and V. M. Contarino, IEEE Microwave Mag., 1, 42 (2000).CrossRefGoogle Scholar
  5. 5.
    F. Pellen, V. Jezequel, and G. Zion, Appl. Opt., 51, 7690 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    L. Mullen, B. Cochenour, W. Rabinovich, et al., Appl. Opt., 48, 328 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    F. Y. Lin and J. M. Liu, IEEE J. Quantum Electron., 10, 991 (2014).CrossRefGoogle Scholar
  8. 8.
    K. Myneni, T. A. Barr, B. R. Reed, et al., Appl. Phys. Lett, 78, 1496 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    T. B. Simpson, J. M. Liu, A. Gavrielides, et al., Appl. Phys. Lett, 64, 3539 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    J. Mork, B. Tromborg, and J. Mark, IEEE J. Quantum Electron., 28, 93 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    F. Y. Lin and J. M. Liu, J. Quantum Electron., 40, 815 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    M. T. Zhang, J. Z. Zhang, and J. G. Zhang, Laser Optoelectron. Process., 53, 051402 (2016).CrossRefGoogle Scholar
  13. 13.
    R. Zhang, H. L. Cavalcante, G. Zheng, et al., Phys. Rev. E, 80, 045202 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    F. Pellen, X. Intes, and P. Olivard, J. Phys. D: Appl. Phys, 33, 349 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    L. Mullen, A. Laux, and B. Cochenour, Appl. Opt., 48, 2607 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    J. Z. Li, Handbook of Optics, Shanxi Science and Technology Press (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhenmin Shen
    • 1
    Email author
  • Zhiwen Guo
    • 2
  • Bingjie Wang
    • 2
  • Tong Zhao
    • 2
  • Jianzhong Zhang
    • 2
  • Menglong Li
    • 1
  1. 1.Key Laboratory for Space Laser Information Perception Technology of CASTBeijing Institute of Space Mechanics and ElectricityBeijingChina
  2. 2.Key Laboratory of Advanced Transducers and Intelligent Control SystemTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations