Journal of Russian Laser Research

, Volume 40, Issue 3, pp 237–242 | Cite as

Composite Ceramic Nd3+:YAG/Cr4+:YAG Laser Elements

  • V. V. Balashov
  • V. V. Bezotosnyi
  • E. A. Cheshev
  • V. P. Gordeev
  • A. Yu. Kanaev
  • Yu. L. Kopylov
  • A. L. Koromyslov
  • K. V. Lopukhin
  • K. A. PolevovEmail author
  • I. M. Tupitsyn


We produce composite ceramic laser elements Nd3+:YAG/Cr4+:YAG using two different methods, i.e., (1) layer-by-layer uniaxial pressing in a metallic mold with sequential addition of appropriate portions of the powder; (2) stacking and pressing of previously uniaxially pressed tablets in a cold isostatic press. In lasers where composite ceramic Nd3+:YAG/Cr4+:YAG elements are used together with longitudinal diode pumping, we obtain the lasing regime for both types of active elements at a wavelength of 1,064 nm in the Q-switch mode. Lasers with ceramic composites produced by stacking and cold isostatic pressing of the previously pressed tablets demonstrate a slope efficiency (~30–33%) even higher than lasers with crystalline saturable absorber (~21%). Lasers based on ceramic composites manufactured by layer-by-layer pressing of powders have an efficiency of ~11–19%. Composites made by stacking and cold isostatic pressing of the previously pressed tablets demonstrate a generation threshold close to those in lasers with crystalline saturable absorbers.


composite ceramics laser elements Q-switch diode end pump 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Sanghera, W. Kim, G. Villalobos, et al., Proc. SPIE, 8187, 81870G (2011).CrossRefGoogle Scholar
  2. 2.
    V. V. Bezotosnyi, V. V. Balashov, V. D. Bulaev, et al., Quantum Electron., 48, 802 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    W. Liu, Y. Zeng, J. Li, et al., J. Alloys Compd., 527, 66 (2012).CrossRefGoogle Scholar
  4. 4.
    V. V. Osipov, V. A. Shitov, V. I. Solomonov, et al., Ceram. Int., 41, 13277 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. Fu, L. Ge, J. Li, et al., Opt. Mater., 71, 90 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    S. G. Garanin, V. V. Osipov, V. A. Shitov, et al., Atmos. Oceanic Opt., 29, 381 (2016).CrossRefGoogle Scholar
  7. 7.
    T. Kamimura, T. Okamoto, Y. L. Aung, et al., “Ceramic YAG composite with Nd gradient structure for homogeneous absorption of pump power,” in: Abstracts of CLEO 2007, Baltimore, Maryland (2007), CThT6.Google Scholar
  8. 8.
    L. Bonnet, R. Boulesteix, A. Maitre, et al., Opt. Mater., 50, 2 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    A. Ikesue, T. Yoda, S. Nakayama, et al., “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” in: Abstracts of the 25th Annual Meeting of the Japan Society for Laser Reproduction (2005), I12.Google Scholar
  10. 10.
    Ch. Ma, F. Tang, H. Lin, et al., J. Alloys Compd., 640, 317 (2015).CrossRefGoogle Scholar
  11. 11.
    F. Tang, Y. Cao, J. Huang, et al., J. Europ. Ceram. Soc., 32, 3995 (2012).CrossRefGoogle Scholar
  12. 12.
    K. Fujioka, A. Sugiyama , Ya. Fujimoto, et al., Opt. Mater., 46, 542 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    H. Yagi, K. Takaichi, K. Ueda, et al., Opt. Mater., 15, 1338 (2005).Google Scholar
  14. 14.
    R. Feldman, Y. Shimony, Z. Burshtein, et al., Opt. Mater., 24, 393 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    N. Pavel, M. Tsunekane, and T. Taira, Opt. Express, 19, 10 (2011).CrossRefGoogle Scholar
  16. 16.
    I. Krystal Jones, Z. M. Seeley, N. J. Cherepy, et al., Opt. Mater., 75, 19 (2018).ADSCrossRefGoogle Scholar
  17. 17.
    A. Ikesue and Y. L. Aung, Nature Photon., 2, 721 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    W. P. Latham, A. Lobad, and T. C. Newell, “6.5 kW, Yb:YAG Ceramic thin disk laser,” AIP Conf. Proc., 1278, 758 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    M. Tokurakawa, A. Shirakawa, K. Ueda, et al., Opt. Express, 17, 3353 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    J. Zayhowski and C. Dill III, Opt. Lett., 19, 18 (1994).CrossRefGoogle Scholar
  21. 21.
    J. Zayhowski, J. Alloys Compd., 303-304, 393 (2000).CrossRefGoogle Scholar
  22. 22.
    J. Miao, B. Wang, J. Peng, et al., Opt. Laser Technol., 40, 137 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    A. Shestakov, Photonics, 5, 30 (2007).Google Scholar
  24. 24.
    J. Dong, A. Shirakawa, K. Ueda, et al., Appl. Phys. Lett., 90, 191106 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    J. Dong, K. Ueda, A. Shirakawa, et al., Opt. Express, 15, 14516 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    V. Balashov, Yu. Kopylov, V. Kravchenko, et al., “Fabrication of YAG:RE (RE=Yb, Nd, Cr) ceramics using divalent sintering aids,” in: Development Prospects within the Strategic Academic Units, Preprint MEPhI (2018), p. 106.Google Scholar
  27. 27.
    V. Bezotosnyi, V. Bondarev, O. Krokhin, et al., Quantum Electron., 39, 241 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    E. Ashkinazi, V. Bezotosnyi, V. Bondarev, et al., Quantum Electron., 42, 959 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Balashov
    • 2
  • V. V. Bezotosnyi
    • 1
  • E. A. Cheshev
    • 1
  • V. P. Gordeev
    • 1
  • A. Yu. Kanaev
    • 3
  • Yu. L. Kopylov
    • 1
    • 2
  • A. L. Koromyslov
    • 1
  • K. V. Lopukhin
    • 1
    • 2
  • K. A. Polevov
    • 1
    Email author
  • I. M. Tupitsyn
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Kotelnikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesFryazinoRussia
  3. 3.Federal State Enterprise “State Laser Polygon Raduga”RaduzhnyRussia

Personalised recommendations