Advertisement

Journal of Russian Laser Research

, Volume 40, Issue 3, pp 213–220 | Cite as

Weak Chaos with Cold Atoms in a 2D Optical Lattice with Orthogonal Polarizations of Laser Beams

  • Sergey V. PrantsEmail author
Article
  • 7 Downloads

Abstract

We study theoretically coherent dynamics of cold atoms in the near-resonant 2D optical lattice with orthogonal polarizations, taking into account a coupling between the atomic internal (electronic) and external (translational) degrees of freedom. We show that in the semiclassical approximation this dynamics may be regular or chaotic in dependence on the values of the detuning between the electric-dipole transition and the laser field frequencies. Chaos manifests itself both in the Rabi oscillations and in the translational motion at comparatively small absolute values of the detuning. The center-of-mass motion in the chaotic regime resembles the random walk of atoms in a 2D lattice which is an absolutely rigid one. Chaos is quantified by the values of the maximal Lyapunov exponent and is shown to be weaker as compared with the case of cold atoms in a 1D lattice. In fact, chaos appears at the time moments when the atom crosses 1D or 2D nodes of the lattice potential when its induced electric dipole moment changes suddenly in a random-like manner.

Keywords

cold atoms 2D optical lattice chaotic walking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Grynberg and C. Robilliard, Phys. Rep., 355, 335 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    M. Greiner and S. Folling, Nature, 435, 736 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms, World Scientific, Singapore (1990).CrossRefGoogle Scholar
  4. 4.
    V. Letokhov, Laser Control of Atoms and Molecules, Oxford University Press, New York (2007).Google Scholar
  5. 5.
    G. A. Askaryan, Sov. Phys. JETP, 15, 1088 (1962).Google Scholar
  6. 6.
    V. S. Letokhov, JETP Lett, 7, 272 (1968).ADSGoogle Scholar
  7. 7.
    S. Chu, Rev. Mod. Phys., 73, 685 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    C. Cohen-Tannoudji, Rev. Mod. Phys., 73, 707 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    W. D. Phillips, Rev. Mod. Phys., 73, 721 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    M. G. Raizen, Adv. At. Mol. Opt. Phys., 41, 43 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    W. K. Hensinger, N. R. Heckenberg, G.J. Milburn, and H. Rubinsztein-Dunlop, J. Opt. B: Quantum Semiclass. Opt., 5, 83 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, Phys. Rev. Lett., 94, 174103 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev. A, 45, R19 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    S. V. Prants, L. E. Kon’kov, and I. L. Kirilyuk, Phys. Rev. E, 60, 335 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    S. V. Prants, Phys. Scr., 92, 044002 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    D. Mello, D. Schaffner, J. Werkmann, et al., Phys. Rev. Lett., 122, 203601 (2019).ADSCrossRefGoogle Scholar
  17. 17.
    S. V. Prants and L. S. Yacoupova, J. Mod. Opt., 39, 961 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    S. V. Prants, Zh. Éksp. Teor. Fiz., 136, 872 (1990).Google Scholar
  19. 19.
    L. E. Kon’kov and S. V. Prants, JETP Lett., 65, 833 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    S. V. Prants and L. E. Kon’kov, Phys. Lett. A, 225, 33 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    S. V. Prants and L. E. Kon’kov, JETP Lett., 73, 1801 (2001).CrossRefGoogle Scholar
  22. 22.
    V. Yu. Argonov and S. V. Prants, J. Exp. Theor. Phys, 96, 832 (2003)..ADSCrossRefGoogle Scholar
  23. 23.
    S. V. Prants, M. Yu. Uleysky, and V. Yu. Argonov, Phys. Rev. A, 73, 023807 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    V. Yu. Argonov and S. V. Prants, J. Russ. Laser Res., 27, 360 (2006).CrossRefGoogle Scholar
  25. 25.
    S. V. Prants, Europhys. Lett., 99, 20009 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 75, 063428 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 78, 043413 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    V. O. Vitkovsky and S. V. Prants, Opt. Spectrosc., 114, 52 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    S. V. Prants, JETP Lett., 104, 749 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    D. Hennequin and D. Verkerk, Eur. Phys. J. D, 57, 95 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    E. Horsley, S. Koppell, and L. Reichl, Phys. Rev. E, 89, 012917 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    Y. Boretz and L. E. Reichl, Phys. Rev. E, 91, 042901 (2015).ADSCrossRefGoogle Scholar
  33. 33.
    Max D. Porter and L. E. Reichl, Phys. Rev. E, 93, 012204 (2016).ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    L. E. Kon’kov and S. V. Prants, J. Math. Phys., 37, 1204 (1996).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Nonlinear Dynamical Systems, Ilyichov Pacific Oceanological InstituteRussian Academy of SciencesVladivostokRussia

Personalised recommendations