Advertisement

Stimulated Low-Frequency Raman Scattering in Albumin

  • M. A. Shevchenko
  • L. L. Chaikov
  • M. N. Kirichenko
  • A. D. KudryavtsevaEmail author
  • T. V. Mironova
  • V. I. Savichev
  • V. V. Sokovishin
  • N. V. Tcherniega
  • K. I. Zemskov
Article

Abstract

Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum albumin (HSA and BSA), in view of the SLFRS method. We use 20 ns ruby-laser pulses for excitation. The SLFRS frequency shifts, corresponding to acoustic eigenfrequencies of the sample, are registered by Fabry–Pérot interferometers. For HAS, the set of eigenfrequencies obtained is 6 GHz (0.2 cm1), 10 GHz (0.33 cm1), and 15.6 GHz (0.52 cm1), while for BSA, it is 8.7 GHz (0.29 cm1) and 16.5 GHz (0.55 cm1). We also measure the conversion efficiency and threshold. The SLFRS can be applied for biological-object identification and impact on the biological objects.

Keywords

stimulated scattering spectrum laser human serum albumin bovine serum albumin nanoparticles nonlinear optics biharmonic pump 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Duval, A. Boukenter, and B. Champagnon, Phys. Rev. Lett., 56, 2052 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    M. Ivanda, K. Babocsi, C. Dem, et al., Phys. Rev. B, 67, 235329 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    M. Montagna, Phys. Rev. B, 77, 045418 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    J. Witz and F. Brown, Arch Virol., 146, 2263 (2001).CrossRefGoogle Scholar
  5. 5.
    W. Shenton, T. Douglas, M. Young, et al., Adv. Mater., 11, 253 (1999).CrossRefGoogle Scholar
  6. 6.
    M. Knez, A. M. Bittner, F. Boes, et al., Nano Lett., 3, 1079 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    R. Zandi, D. Reguera, R. F. Bruinsma, et al., Proc. Natl. Acad. Sci. U.S.A., 101, 15556 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    M. Talati and P. K. Jha, Phys. Rev. E, 73, 011901 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    E. C. Dykeman, O. F. Sankey, and Kong-Thon Tsen, Phys. Rev. E, 76, 011906 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    K. T. Tsen, E. C. Dykeman, O. F. Sankey, et al., Virol. J., 3, 79 (2006).CrossRefGoogle Scholar
  11. 11.
    E. Duval, Phys. Rev. B, 46, 5795 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    H. Lamb, Proc. London Math. Soc., 13, 189 (1882).Google Scholar
  13. 13.
    L. H. Ford, Phys. Rev. E, 67, 051924 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    M. Babincová, P. Sourivong, and P. Babinec, Med. Hypotheses, 55, 450 (2000).CrossRefGoogle Scholar
  15. 15.
    A. Balandin and V. Fonoberov, J. Biomed. Nanotechnol., 1, 90 (2005).CrossRefGoogle Scholar
  16. 16.
    D. B. Murray and L. Saviot, J. Phys.: Conf. Ser., 92, 012036 (2007).Google Scholar
  17. 17.
    D. B. Murray and L. Saviot, Physica E, 26, 417 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    N. Tcherniega and A. Kudryavtseva, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 3, 513 (2009).CrossRefGoogle Scholar
  19. 19.
    N. Tcherniega, M. Samoylovich, A. Kudryavtseva, et al., Opt. Lett., 35, 300 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    A. Kudryavtseva, N. Tcherniega, M. Samoylovich, and A. Shevchuk, Int. J. Thermophys., 33, 2194 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    N. Tcherniega, K. Zemskov, V. Savranskii, et al, Opt. Lett., 38, 824 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    O. V. Karpova, A. D. Kudryavtseva, V. N. Lednev, et al., Laser Phys. Lett., 13, 085701 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    E. K. Donchenko, O. V. Karpova, A. D. Kudryavtseva, et al., J. Phys.: Conf. Ser., 918, 012041 (2017).Google Scholar
  24. 24.
    N. V. Tcherniega, S. M. Pershin, A. F. Bunkin, et al., Laser Phys. Lett., 15, 095603 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    P. K. Verma, V. F. Humphrey, and F. A. Duck, Ultrasound Med. Biol., 31, 1375 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Shevchenko
    • 1
  • L. L. Chaikov
    • 1
  • M. N. Kirichenko
    • 1
  • A. D. Kudryavtseva
    • 1
    Email author
  • T. V. Mironova
    • 1
  • V. I. Savichev
    • 1
    • 2
  • V. V. Sokovishin
    • 2
  • N. V. Tcherniega
    • 1
    • 2
  • K. I. Zemskov
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations