Advertisement

Investigation of a Near-Electrode Plasma Formed in the Atmospheric Discharge with Employment of Picosecond Laser Probing

  • E. V. ParkevichEmail author
  • M. A. Medvedev
  • A. I. Khirianova
  • G. V. Ivanenkov
  • A. V. Agafonov
  • A. S. Selyukov
  • A. R. Mingaleev
  • T. A. Shelkovenko
  • S. A. Pikuz
Article

Abstract

We study the formation of an erosive plasma at the instant of the electrical breakdown of an air gap with a pin-to-plan electrode geometry employing the methods of picosecond laser probing. The discharge is ignited by a 25 kV pulse with a rise time of 4 ns. Interferograms, shadowgrams, and schlieren images of the discharge are obtained with a spatial resolution as high as 3 μm and an exposure time of 70 ps. We demonstrate that 1 ns after a sharp rise (100 A/ns) of the discharge current, a highly ionized near-cathode plasma with an electron density of ne 1019–1020 cm3 is formed at the cathode surface together with the clots of a dense plasma with an electron density of \( {n}_e\underset{\sim }{>}{10}^{20} \) cm3. We show that these highly ionized regions lead to the initiation and development of a spark channel originating from the point cathode. We assume that the observed dense plasma corresponds to the erosive plasma explosively formed from a part of the cathode material.

Keywords

picosecond laser probing optical system photography interferogram schlieren image shadowgram gas breakdown spark evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Wagenaars, Plasma Breakdown of Low-Pressure Gas Discharges, Eindhoven University of Technology, Enschede (2006).Google Scholar
  2. 2.
    J. P. Walters, Appl. Spectrosc., 23, 317 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. P. Raizer, Gas Discharge Physics, Springer, Berlin (1991).CrossRefGoogle Scholar
  4. 4.
    Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases [in Russian], Ural Division of the Russian Academy of Science, Ekaterinburg (1998).Google Scholar
  5. 5.
    S. I. Andreev and G. M. Novikova, Opt. Spectrosc., 40, 130 (1976).ADSGoogle Scholar
  6. 6.
    S. I. Andreev and G. M. Novikova, Zh. Tekh. Fiz., 45, 1692 (1975).Google Scholar
  7. 7.
    N. K. Sukhodrev and S. L. Mandelstam, Opt. Spectrosc., 6, 223 (1959).ADSGoogle Scholar
  8. 8.
    H. Raether, Electron Avalanches and Breakdown in Gases, Butterworths, London (1964).Google Scholar
  9. 9.
    D. Levko and L. L. Raja, Phys. Plasmas, 25, 013509 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    A. Lo, A. Cessou, C. Lacour, et al., Plasma Sources Sci. Technol., 26, 045012 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    R. M. van der Horst, T. Verreycken, E. M. van Veldhuizen, and P. J. Bruggeman, J. Phys. D: Appl. Phys., 45, 345201 (2012).CrossRefGoogle Scholar
  12. 12.
    E. V. Parkevich, S. I. Tkachenko, A. V. Agafonov, et al., J. Exp. Theor. Phys., 124, 531 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    E. V. Parkevich, A. I. Khirianova, A. V. Agafonov, et al., J. Exp. Theor. Phys., 126, 422 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    G. A. Mesyats, Explosive Electron Emission [in Russian], Fizmatlit, Moscow (2011).Google Scholar
  15. 15.
    M. M. Tsventoukh, Phys. Plasmas, 25, 053504 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    S. A. Barengolts, G. A. Mesyats, and D. L. Shmelev, J. Exp. Theor. Phys., 93, 1065 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    E. V. Parkevich, Instrum. Exp. Tech., 60, 383 (2017).CrossRefGoogle Scholar
  18. 18.
    S. D. Volosov, Photographic Optics [in Russian], Iskusstvo, Moscow (1978).Google Scholar
  19. 19.
    A. I. Khirianova, E. V. Parkevich, and S. I. Tkachenko, Phys. Plasmas, 25, 073503 (2018).ADSCrossRefGoogle Scholar
  20. 20.
  21. 21.
    V. N. Ochkin, Spectroscopy of Low Temperature Plasma, Wiley, Weinheim (2009).CrossRefGoogle Scholar
  22. 22.
    Ya. B. Zel’dovich and Yu. P. Raizer, Elements of Gas Dynamics and the Classical Theory of Shock Waves, Academic Press, New York (1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. V. Parkevich
    • 1
    Email author
  • M. A. Medvedev
    • 1
  • A. I. Khirianova
    • 1
  • G. V. Ivanenkov
    • 1
  • A. V. Agafonov
    • 1
  • A. S. Selyukov
    • 1
  • A. R. Mingaleev
    • 1
  • T. A. Shelkovenko
    • 1
  • S. A. Pikuz
    • 1
  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations