Advertisement

Analysis and Processing of Spark Channel Interferograms Obtained by Picosecond Laser Interferometry

  • A. I. KhirianovaEmail author
  • E. V. Parkevich
  • M. A. Medvedev
Article

Abstract

We study the formation of a spark channel in an atmospheric discharge on a nanosecond time scale using picosecond laser interferometry. We elaborate the approach to obtain reliable data on the electron density of the developing spark channel. We describe in detail the procedure for tracing and processing the interferograms and obtaining 2D-phase maps as well as the features of the electron density reconstruction. We found that the electron density of the spark channel can be as high as ne 5 · 1019 cm3. This value exceeds the number density nm 2.7 · 1019 cm3 of atmospheric air. We demonstrate that the plasma with such extreme electron density is concentrated near the cathode and in the central core ( 20 μm in size) of the developing spark channel. Also we show that the electron density is nonuniformly distributed along the spark channel. From the cathode surface to the top of the spark channel, the electron density drops down to ne 2 · 1019 cm3. In contrast to that, the linear electron density is approximately constant along the spark channel and reaches a value of Ne 1014 cm1.

Keywords

picosecond laser probing optical system interferometry spark discharge interferogram processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Wagenaars, Plasma Breakdown of Low-Pressure Gas Discharges, Eindhoven University of Technology, Enschede (2006).Google Scholar
  2. 2.
    E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection, IOP Publishing Ltd., Bristol, UK (2000).Google Scholar
  3. 3.
    Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases [in Russian], Ural Division of the Russian Academy of Science, Ekaterinburg (1998).Google Scholar
  4. 4.
    G. A. Mesyats, Pulsed Power Engineering and Electronics [in Russian], Nauka, Moscow (2004).Google Scholar
  5. 5.
    Ya. E. Krasik, A. Dunaevsky, A. Krokhmal, et al., J. Appl. Phys., 89, 2379 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    B. Juttner, J. Phys. D: Appl. Phys., 34, R103 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    S. Yatom, V. Vekselman, and Ya. E. Krasik, Phys. Plasmas, 19, 123507 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    A. Bataller, S. Putterman, S. Pree, and J. Koulakis, Phys. Rev. Lett., 117, 085001 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    E. V. Parkevich, Instrum. Exp. Tech., 60, 383 (2017).CrossRefGoogle Scholar
  10. 10.
    E. V. Parkevich, S. I. Tkachenko, A. V. Agafonov, et al., J. Exp. Theor. Phys., 124, 531 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    E. V. Parkevich, A. I. Khirianova, A. V. Agafonov, et al., J. Exp. Theor. Phys., 126, 422 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    E. V. Parkevich, G. V. Ivanenkov, M. A. Medvedev, et al., Plasma Sources Sci. Technol., 27, 11LT01 (2018).CrossRefGoogle Scholar
  13. 13.
    E. V. Parkevich, M. A. Medvedev, A. S. Selyukov, et al., Opt. Lasers Engin., 116, 82 (2019).CrossRefGoogle Scholar
  14. 14.
    A. I. Khirianova, E. V. Parkevich, and S. I. Tkachenko, Phys. Plasmas, 25, 073503 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    E. V. Parkevich, M. A. Medvedev, A. I. Khirianova, et al., J. Russ. Laser Res., 40, 56 (2018).Google Scholar
  16. 16.
    V. L. Ginzburg, The Propagation of the Electromagnetic Waves in Plasma, Pergamon, Oxford (1970), Ch. 1.Google Scholar
  17. 17.
    N. K. Sukhodrev and S. L. Mandelstam, Opt. Spectrosc., 6, (1959).Google Scholar
  18. 18.
    S. I. Andreev and G. M. Novikova, Opt. Spectrosc., 40, 130 (1976).ADSGoogle Scholar
  19. 19.
    S. I. Andreev and G. M. Novikova, Zh. Tekh. Fiz., 45, 1692 (1975).Google Scholar
  20. 20.
    A. Lo, A. Cessou, C. Lacour, et al., Plasma Sources Sci. Technol., 26, 045012 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    A. Bataller, B. Kappus, C. Camara, and S. Putterman, Phys. Rev. Lett., 113, 024301 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    A. Bataller, G. R. Plateau, B. Kappus, and S. Putterman, J. Phys. D: Appl. Phys., 113, 075001 (2014).Google Scholar
  23. 23.
    S. D. Baalrud and J. Daligault, Phys. Rev. Lett., 110, 235001 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarsky, Principles of Statistical Radiophysics 3: Elements of Random Fields, Springer, Berlin (1989).CrossRefGoogle Scholar
  25. 25.
    V. R. Kuhta, V. V. Lopatin, and P. G. Petrov, Opt. Spectrosc., 56, 179 (1984).Google Scholar
  26. 26.
    S. A. Shcherbanev, A. Yu. Khomenko, S. A. Stepanyan, et al., Plasma Sources Sci. Technol, 26, 02LT01 (2017).CrossRefGoogle Scholar
  27. 27.
    R. M. van der Horst, T. Verreycken, E. M. van Veldhuizen, and P. J. Bruggeman, J. Phys. D: Appl. Phys., 45, 345201 (2012).CrossRefGoogle Scholar
  28. 28.
    I. K. Kikoin, Tables of Physical Quantities [in Russian], Atomizdat, Moscow (1976).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. I. Khirianova
    • 1
    Email author
  • E. V. Parkevich
    • 1
  • M. A. Medvedev
    • 1
  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations