Advertisement

Triangle Geometry of Spin States and Nonlinear Superposition of Probabilities Describing These States

  • Margarita A. Man’koEmail author
  • Vladimir I. Man’ko
Article

Abstract

On the spin-1/2 example, we demonstrate that quantum states can be described by standard probability distributions, which contain the same information that the wave function and the density matrix do. Within the framework of this approach, called for spin-1/2 the quantum suprematism representation, the probability distributions are illustrated by simplex or triangle geometry or by the Triada of Malevich’s Squares (black, red, and white) associated with the triangles, and new quantum relations for areas of the squares are obtained. The superposition principle for spin states and quantum interference phenomenon are expressed as an explicit new nonlinear addition rule for the probability distributions describing the quantum states and illustrated as the addition of two Triadas of Malevich’s squares. We discuss some analogy of the triangle geometry of spin-1/2 states related to the O(3) symmetry group and the pyramide geometry related to the hydrogen-atom dynamical symmetry O(2, 4).

Keywords

quantum suprematism triangle geometry of qubits superposition principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 38, 141 (2017).CrossRefGoogle Scholar
  2. 2.
    V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 38, 324 (2017).CrossRefGoogle Scholar
  3. 3.
    V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 38, 416 (2017).CrossRefGoogle Scholar
  4. 4.
    V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, J. Phys. Conf. Ser., 1071, 012008 (2018).CrossRefGoogle Scholar
  5. 5.
    V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 39, 128 (2018).CrossRefGoogle Scholar
  6. 6.
    D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. Rev. Lett., 70, 1244 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    J. Bertrand and P. Bertrand, Found. Phys., 17, 397 (1987).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Vogel and H. Risken, Phys. Rev. A, 40, 2847 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    A. I. Lvovsky and M. G. Raymer, Rev. Mod. Phys., 81, 299 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    M. Asorey, A. Ibort, G. Marmo, and F. Ventriglia, Phys. Scr., 90, 074031 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Dodonov and V. I. Man’ko, Phys. Lett. A, 229, 335 (1997).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    V. I. Man’ko and O. V. Man’ko, J. Exp. Theor. Phys., 85, 430 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Man’ko and V. I. Man’ko, J. Russ. Laser Res., 34, 204 (2013).Google Scholar
  14. 14.
    M. A. Man’ko and V. I. Man’ko, Entropy, 17, 2876 (2015).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. A. Man’ko, V. I. Man’ko, and G. Marmo, Nuovo Cimento C, 38, iss. 5, paper 167 (2015).ADSGoogle Scholar
  16. 16.
    M. A. Man’ko and V. I. Man’ko, J. Russ. Laser Res., 38, 211 (2017).CrossRefGoogle Scholar
  17. 17.
    M. A. Man’ko and V. I. Man’ko, J. Russ. Laser Res., 39, 1 (2018).CrossRefGoogle Scholar
  18. 18.
    J. A. Lopez-Saldivar, O. Castaños, M. A. Man’ko, and V. I. Man’ko, Phys. Rev. E, 97, 022128 (2018).Google Scholar
  19. 19.
    M. A. Man’ko, J. Phys.: Conf. Ser., 1071, 012015 (2018).Google Scholar
  20. 20.
    J. A. Lopez-Saldivar, O. Castaños, M. A. Man’ko, and V. I. Man’ko, Physica A, 491, 64 (2018).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. A. Man’ko and V. I. Man’ko, Phys. Scr., 93, 084002 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    M. A. Man’ko and V. I. Man’ko, Entropy, 20, 692 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    J. A. Lopez-Saldivar, O. Castaños, E. Nahmad-Achar, et al., Entropy, 20, 630 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    L. Landau, Z. Phys., 45, 430 (1927).ADSCrossRefGoogle Scholar
  25. 25.
    J. von Neumann, Gött. Nach., 1, 245 (1927).Google Scholar
  26. 26.
    E. C. G. Sudarshan, J. Russ. Laser Res., 24, 195 (2003).CrossRefGoogle Scholar
  27. 27.
    V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Russ. Laser Res., 20, 421 (1999).CrossRefGoogle Scholar
  28. 28.
    V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Russ. Laser Res., 21, 305 (2000).CrossRefGoogle Scholar
  29. 29.
    V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Russ. Laser Res., 24, 507 (2003).CrossRefGoogle Scholar
  30. 30.
    V. I. Man’ ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, J. Phys. A: Math. Gen., 35, 7137 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Lett. A, 327, 353 (2004).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    I. A. Malkin and V. I. Man’ ko, JETP Lett., 2, 230 (1965).MathSciNetGoogle Scholar
  33. 33.
    Yu. B. Rumer and A. I. Fet, Theor. Math. Phys., 103, 1221 (2004).Google Scholar
  34. 34.
    B. G. Konopelchenko and Yu. B. Rumer, Uspekhi Fiz. Nauk, 129, 339 (1979) [Sov. Phys. Usp, 22, 837 (1979)].Google Scholar
  35. 35.
    B. G. Konopelchenko, “Nonlinear integrable equations” in: Lecture Notes in Physics, Springer (1987), Vol. 270, p. 371.Google Scholar
  36. 36.
    M. Kibler, J. Mol. Struct. (Theochem.), 187, 83 (1989).CrossRefGoogle Scholar
  37. 37.
    A. Shatskikh, Black Square: Malevich and the Origin of Suprematism, Yale University Press, New Haven, CT, USA (2012).CrossRefGoogle Scholar
  38. 38.
    V. I. Man’ko, G. Marmo, F. Ventriglia, and P. Vitale, J. Phys. A: Math. Theor., 50, 335302 (2017).CrossRefGoogle Scholar
  39. 39.
    V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys., 17, 821 (1976).ADSCrossRefGoogle Scholar
  40. 40.
    G. Lindblad, Commun. Math. Phys., 48, 119 (1976).ADSCrossRefGoogle Scholar
  41. 41.
    A. Khrennikov, Probability and Randomness. Quantum versus Classical, World Scientific, Singapore (2016).CrossRefzbMATHGoogle Scholar
  42. 42.
    A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North Holland, Amsterdam (1982).zbMATHGoogle Scholar
  43. 43.
    V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, Eur. Phys. J. D, 73, 10 (2019); DOI:  https://doi.org/10.1140/epjd/e2018-90487-9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations