Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 4, pp 411–419 | Cite as

A Damped Oscillator with a δ-Kicked Frequency in the Probability Representation of Quantum Mechanics

  • Vladimir N. Chernega
  • Olga V. Man’ko
Article

Abstract

We obtain the tomogram of squeezed correlated states of a quantum parametric damped oscillator in an explicit form. We study the damping within the framework of the Caldirola–Kanai model and chose the parametric excitation in the form of a very short pulse simulated by a δ-kick of frequency; the squeezing phenomenon is reviewed for both models. The cases of strong and weak damping are investigated.

Keywords

parametric oscillator Caldirola–Kanai model probability representation of quantum mechanics tomograms squeezing coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schrödinger, Ann. Phys (Liepzig), 79, 489 (1926).Google Scholar
  2. 2.
    L. D. Landau, Z. Phys., 45, 430 (1927).ADSCrossRefGoogle Scholar
  3. 3.
    J. von Neumann, Nach. Ges. Wiss. Göttingen, 11, 245 (1927).Google Scholar
  4. 4.
    V V. Dodonov, and V. I. Man’ko, Invariants and the Evolution of Nonstationary Quantum Systems, Proceedings of the Lebedev Physical Institute, Nauka, Moscow (1987), Vol. 183; [English translation: Nova Science Publishers, New York (1989)].Google Scholar
  5. 5.
    S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A, 213, 1 (1996).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Mancini, V. I. Man’ko and P. Tombesi, Found. Phys., 27, 801 (1997).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    O. V. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 18, 407(1997).CrossRefGoogle Scholar
  8. 8.
    J. Radon, Berichte Sächsischen Akad. Wissensch., Leipzig, 29, 262 (1917).Google Scholar
  9. 9.
    E. Wigner, Phys. Rev., 40, 749 (1932).ADSCrossRefGoogle Scholar
  10. 10.
    J. Bertrand, and P. Bertrand, Found. Phys., 17, 397 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    K. Vogel and H. Risken, Phys. Rev. A, 40, 2847 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. Rev. Lett., 70, 1244 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    S. Schiller, G. Breitenbach, S. F. Pereira, et al., Phys. Rev. Lett., 77, 2933 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    W. Paul, Rev. Mod. Phys., 62, 531 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    L. S. Brown, Phys. Rev. Lett., 66, 527 ( 1991 ).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    I. A. Malkin, V. I. Man’ko, and D. A. Trifonov, J. Math. Phys., 14, 576 (1973).ADSCrossRefGoogle Scholar
  17. 17.
    V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Int. J. Theor. Phys., 14, 37 (1975).CrossRefGoogle Scholar
  18. 18.
    V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, J. Sov. Laser Res., 13, 196 (1992).CrossRefGoogle Scholar
  19. 19.
    C. F. Lo, J. Phys. A: Math. Gen., 23, Ii 55 (1990).Google Scholar
  20. 20.
    J. Janszky and Y. Y. Yushin, Opt. Commun., 59, 151 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    M. S. AbdalIa and R. I. C. Colegrave, Phys. Rev. A, 48, 1526 (1993).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    B. Baseia, R. Vyas, and V. S. Bagnato, Quantum Opt., 5, 155 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    J. Janszky and P. Adam, Phys. Rev. A, 46, 6091 (1992).ADSCrossRefGoogle Scholar
  24. 24.
    T. Kiss, P. Adam, and J. Janszky, Phys. Lett. A, 192, 311 (1994).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    P. Caldirola, Nuovo Cimento, 18, 393 (1941).CrossRefGoogle Scholar
  26. 26.
    E. Kanai, Prog. Theor. Phys., 3, 440 (1948).ADSCrossRefGoogle Scholar
  27. 27.
    R. W. Hasse, J. Math. Phys., 16, 2005 (1975).ADSCrossRefGoogle Scholar
  28. 28.
    P. Caldirola and L. Lugiato, Physica A, 116, 248 (1982).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Akpan N. Ikot, Arab. J. Sci. Eng., 37, 217 (2012).MathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Moya-Cesa, Rev. Mex. Fis., 53, 42(2007).Google Scholar
  31. 31.
    Sirin A. Büyükask, J. Math. Phys., 59, 082104 (2018).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    S. P. Kim, J. Phys. A: Math. Gen., 36, N48 (2003).Google Scholar
  33. 33.
    J. R. Choi, IIOABJ, 5, 1 (2014).Google Scholar
  34. 34.
    V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, Phys. Lett. A, 175, 1 (1993).ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    G. S. Agarwal and S. A. Kumar, Phys. Rev. Lett, 67, 3665 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    Y. S. Kim and V. I. Man’ko, Phys. Lett. A, 157, 226 (1991).ADSCrossRefGoogle Scholar
  37. 37.
    O. V. Man’ko and Leehwa Yeh, Phys. Lett. A, 189, 268 (1994).ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    T. Kiss, J. Janszky, and P. Adam, Phys. Rev. A, 49, 4935 (1994).ADSCrossRefGoogle Scholar
  39. 39.
    O. V. Man’ko, in: D. Han, K. Peng, Y. S. Kim, and V. I. Man’ko, (Eds.), Proceedings of the IV International Conference on Squeezed States and Uncertainty Relation, China, 1995, NASA Conference Publication, MD (1995), Vol. 3322, p. 235.Google Scholar
  40. 40.
    O. V. Man’ko, V. I. Man’ko, and G. Marmo, J. Phys. A: Math. Gen., 35, 699 (2002).ADSCrossRefGoogle Scholar
  41. 41.
    D. J. C. Fernandez and B. Mielnik, J. Math. Phys., 35, 2083 (1994).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations