Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 4, pp 401–410 | Cite as

Superradiance with Incoherent Nonradiative Decay

  • Igor E. Protsenko
  • Alexander V. Uskov
Article
  • 18 Downloads

Abstract

We describe superradiance of a few emitters in a dissipative environment with nonradiative decay in the Schrödinger approach, which is simpler than the density matrix formalism. We find that superradiance increases the quantum efficiency of the radiation if the baths, responsible for dissipation, do not come to equilibrium. The reason is that decoherence destroys Dicke “dark” states, lets emitters radiate, and does not affect the fast radiation from “bright” Dicke states.

Keywords

superradiance Schrödinger picture quantum coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Dicke, Phys. Rev. A, 93, 99 (1954).ADSCrossRefGoogle Scholar
  2. 2.
    M. Gross and S. Haroche, Phys. Rep. (Rev. Sec. Phys. Lett.), 93, 301 (1982).ADSGoogle Scholar
  3. 3.
    L. I. Men’shikov, Phys. Usp., 42, 107 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms, Courier Corporation (1987).Google Scholar
  5. 5.
    M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge Univ. Press, Cambridge (1997).CrossRefGoogle Scholar
  6. 6.
    B. M. Garrawy, Philos. Trans. R. Soc. A, 369, 1137 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    T. V. Shahbazyan and V. N. Pustovit, Appl. Phys. A, 103, 755 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    I. E. Protsenko, A. V. Uskov, Xue-Wen Chen, et al., J. Phys. D: Appl. Phys., 50, 254003 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    P. Tighineanu, R. S. Daveau, T. B. Lehmann, et al., Phys. Rev. Lett., 116, 163604 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    S. Kreinberg, W. W. Chow, J. Wolters, et al., Light: Sci. Appl., 6, e17030 (2017).CrossRefGoogle Scholar
  11. 11.
    I. Protsenko, E. C. André, A. Uskov, et al., “Collective effects in nanolasers explained by generalized rate equations,” arXiv:1709.08200v3 [quant-ph] (2017).Google Scholar
  12. 12.
    J. A. Mlynek, A. A. Abdumalikov, C. Eichler, et al., Nature Commun., 5, 5186 (2014).CrossRefGoogle Scholar
  13. 13.
    E. Mascarenhas, D. Gerace, M. F. Santos, et al., Phys. Rev. A, 88, 063825 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    A. N. Oraevskii, Phys. Usp., 37, 393 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    Th. Richter, Ann. Phys. (Leipzig), 36, 266 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    P. W. Milonni and P. L. Knight, Phys. Rev. A, 10, 1096 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    I. E. Protsenko, J. Exp. Theor. Phys., 103, 167 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    V. A. Belyakov, V. A. Burdov, D. M. Gaponova, et al., Phys. Solid State, 46, 27 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations