Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 3, pp 275–279 | Cite as

High-Gain Nanosecond Vortex Laser

  • Hongyan Xu
  • Zhenjiang Song
  • Xiujun Huang
  • Dele Shi
  • Liang Liu
  • Kaiming Wang
Article
  • 7 Downloads

Abstract

We demonstrate a high-gain vortex power amplifier with the double-pass configuration based on the rod Nd:YAG crystal. In the experiments, a nanosecond vortex seed beam is converted from a conventional Q-switched Nd:YAG laser output with a spiral phase plate and then amplified with the Nd:YAG amplifier stage. A maximum amplification output energy up to 163.5 mJ is achieved at 20 Hz with a 3.2-ns pulse, corresponding to an amplification factor of 81.8. Further discussions are provided to find ways of increasing the power scaling.

Keywords

optical vortex laser amplifier Nd:YAG laser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Yao and M. J. Padgett, Adv. Opt. Photon., 3, 161 (2011).CrossRefGoogle Scholar
  2. 2.
    L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A, 45, 8185 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    M. Padgett and R. Bowman, Nat. Photon., 5, 343 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    D. G. Grier, Nature, 424, 810 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    S. Bretschneider, C. Eggeling, and S. W. Hell, Phys. Rev. Lett., 98, 218103 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    T. Watanabe, Y. Iketaki, T. Omatsu, et al., Chem. Phys. Lett., 371, 634 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    G. Gibson, J. Courtial, M. J. Padgett, et al., Opt. Express, 12, 5448 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Liu, C. Gao, X. Qi, and H. Weber, Opt. Express, 16, 7091 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    T. Omatsu, K. Chujo, K. Miyamoto, et al., Opt. Express, 18, 17967 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, Phys. Rev. A, 54, 3742 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    M. Koyama, T. Hirose, M. Okida, et al., Opt. Express, 19, 14420 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    T. Yusufu, Y. Tokizane, K. Miyamoto, and T. Omatsu, Opt. Express, 21, 23604 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    M. Koyama, T. Hirose, M. Okida, et al., Opt. Express, 19, 994 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Tanaka, M. Okida, K. Miyamoto, and T. Omatsu, Opt. Express, 17, 14362 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    D. J. Kim, J. W. Kim, and W. A. Clarkson, Appl. Phys. B, 117, 459 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    X. Chen, C. Chang, Z. Lin, et al., IEEE Photon. Tech. Lett., 28, 1271 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    M. Koyama, A. Shimomura, K. Miyamoto, and T. Omatsu, Appl. Phys. B, 116, 249 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    N. Apurv Chaitanya, A. Aadhi, M. V. Jabir, and G. K. Samanta, Opt. Lett., 40, 2614 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Li, Z. Zhou, D. Ding, and B. Shi, J. Opt. Soc. Am. B, 32, 407 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hongyan Xu
    • 1
  • Zhenjiang Song
    • 1
  • Xiujun Huang
    • 1
  • Dele Shi
    • 1
  • Liang Liu
    • 1
    • 2
    • 3
  • Kaiming Wang
    • 1
  1. 1.Shandong Institute of Space Electronic TechnologyYantaiChina
  2. 2.National University of Defense TechnologyChangshaChina
  3. 3.Naval Aeronautical and Astronautical UniversityYantaiChina

Personalised recommendations