Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 3, pp 267–274 | Cite as

Manipulating Light in Coupled Asymmetric Nanostructures Induced by a Visible–NIR Laser

  • Ying-Ying Yang
  • Li-Xin Zhang
Article
  • 17 Downloads

Abstract

We design an asymmetric nanostructure in the longitudinal direction at the visible–NIR range, which enables high enhancement factor and has the properties of Fano resonance induced by a visible–NIR laser. By simulating and analyzing the resonance frequency spectra of various nanorods, nanodipoles, and combined nanoantennas, we optimize the resonant spectra and enhanced factor of such nanoantennas. It has broad-band resonant spectra with a FWHM from 800 to 1,100 nm and possesses two resonant peaks at 870 and 1,000 nm, with an enhancement factor of 24. The current density distribution in such nanoantennas with different phases is also simulated in order to investigate its resonant mode. This theoretical study paves the way towards nanoscale lightwave control and spectral splitting. The designed nanodevices provide great potential for applications in ultrasensitive color sorters and biosensors induced by visible–NIR lasers.

Keywords

naonodevices asymmetric nanoantennas field enhancement Fano resonance visible–NIR lasers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Fang and X. Zhu, Adv. Mater., 25, 3840 (2013).CrossRefGoogle Scholar
  2. 2.
    Y.-Y. Yang, E. Csap, Y.-L. Zhang, et al., Plasmon., 11, 99 (2013).Google Scholar
  3. 3.
    N. C. Lindquist, P. Nagpal, K. M. McPeak, et al., Rep. Progress Phys., 75, 036501 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    J. Y. Suh and T. W. Odom, Nano Today, 8, 469 (2013).CrossRefGoogle Scholar
  5. 5.
    Y.-Y. Yang, Q.-G. Li, H.-J. Yu, and X.-C. Lin, Laser Phys., 23, 045301 (2013).Google Scholar
  6. 6.
    Y.-Y. Yang, Q.-G. Li, L. Zhang, and X.-C. Lin, Plasmon, 11, 17 (2016).CrossRefGoogle Scholar
  7. 7.
    H. Wei and H. Xu, Mater. Today, 17, 372 (2014).CrossRefGoogle Scholar
  8. 8.
    G. Davy and K. G. Stephen, et al., J. Phys. D: Appl. Phys., 48, 184001 (2015).CrossRefGoogle Scholar
  9. 9.
    S. Zhang, Z. Ye, Y. Wang, et al., Phys. Rev. Lett., 109, 193902 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    Y.-Y. Yang, Y.-L. Zhang, F. Jin, et al., Opt. Commun., 284, 3474 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    Y.-Y. Yang, A. Scrinzi, A. Husakou, et al., Opt. Express, 21, 2195 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, ACS Nano, 7, 4527 (2013).CrossRefGoogle Scholar
  13. 13.
    B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, et al., Nat. Mater., 9, 707 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    M. Hentschel, M. Saliba, R. Vogelgesang, et al., Nano Lett., 10, 2721 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    E. D. Palik, Handbook of Optical Constants of Solids, Academic, New York (1985), Vol. 1, p. 353.Google Scholar
  16. 16.
    G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Series in Automatic Computation, Prentice-Hall, Englewood Clifs, NJ (1973).zbMATHGoogle Scholar
  17. 17.
    J.-P. Berenger, J. Comput. Phys., 114, 185 (1994).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. P. Kottmann and O. J. F. Martin, IEEE Trans. Antennas Propag., 48, 1719 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of All-Solid-State Light Sources Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.Research Institute of Petroleum Explorations and DevelopmentBeijingChina

Personalised recommendations