Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 3, pp 252–262 | Cite as

Optical Rectification and Generation of Harmonics Under Condition of Propagation of Few-Cycle Pulses in the Birefringent Medium with Asymmetric Molecules

Article
  • 5 Downloads

Abstract

Without using the approximation of slowly varying envelopes, we investigate spectral transformations of vector few-cycle and quasi-monochromatic solitons under propagation in the birefringent medium of asymmetric molecules possessing permanent dipole moments. We show that when an ordinary pulse enters the medium, the self-modulation effect arises. As a result, the spectrum of the ordinary component undergoes significant changes from the violet shift and the generation of odd harmonics with close frequency satellites to the supercontinuum including zero frequency. The spectrum of the extra-ordinary few-cycle pulse also has the properties of a supercontinuum. When a quasi-monochromatic ordinary pulse enters the medium in the spectrum of an extra-ordinary component, the effect of optical rectification with simultaneous generation of the second harmonics is clearly manifested.

Keywords

optical soliton few-cycle pulse permanent dipole moment spectral supercontinuum second harmonics optical rectification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kočinac, Z. Ikonić, and V. Milanović, Opt. Commun., 140, 89 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    Lee V. Casperson, Phys. Rev. A, 57, 609 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    M. Agrotis, N. M. Ercolani, S. A. Glasgow, and J. V. Moloney, Physica D, 138, 134 (2000).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J.-G. Caputo and A. I. Maimistov, Phys. Lett. A, 296, 34 (2002).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. V. Sazonov and N. V. Ustinov, J. Exp. Theor. Phys., 115, 741 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    S. A. Glasgow, M. A. Agrotis, and N. M. Ercolani, Physica D, 212, 82 (2005).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A. M. Basharov, JETP Lett., 103, 15 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    S.V. Sazonov, J. Exp. Theor. Phys., 97, 722 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    S. V. Sazonov and N. V. Ustinov, JETP Lett., 83, 483 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Zabolotskii, Phys. Rev. E., 77, 036603 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    S. V. Sazonov, JETP Lett., 102, 834 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    S. V. Sazonov, Opt. Commun., 380, 480 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    S. V. Sazonov and N. V. Ustinov, Opt. Spectrosc., 106, 416 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    M. I. Bakunov and S. B. Bodrov, J. Opt. Soc. Am B, 11, 2549 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    A. M. Basharov, J. Phys.: Conf. Ser., 714, 012005 (2016).Google Scholar
  16. 16.
    E. M. Belenov and A. V. Nazarkin, JETP Lett., 51, 288 (1990).ADSGoogle Scholar
  17. 17.
    E. M. Belenov, A. V. Nazarkin, and V. A. Ushchapovskii, Sov. Phys. JETP, 73, 422 (1991).Google Scholar
  18. 18.
    G. L. Lamb, Elements of Soliton Theory, Wiley, New York (1980).MATHGoogle Scholar
  19. 19.
    A. A. Drozdov, S. A. Kozlov, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rev. A, 86, 053822 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Drozdov and S. A. Kozlov, Sci. Tech. J. Inform. Technol., Mech. Opt., 72), 99 (2011).Google Scholar
  21. 21.
    R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, et al., JETP Lett., 105, 408 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations