Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 3, pp 242–251 | Cite as

Numerical Simulation of Shock Wave Generation for Ignition of Precompressed Laser Fusion Target

  • S. Yu. Gus’kov
  • N. V. Zmitrenko
  • O. R. Rahimli
Article

Abstract

In this work, we investigate the formation of a converging shock wave in a homogeneous spherical target, whose outer layer was heated by a flux of monoenergetic fast electrons of a given particle energy. Ablation pressure generating the wave forms at spherical expansion of a layer of a heated substance, whose areal density remains constant throughout the entire heating process and equal to the product of the initial heating depth and density of the target. The studies are carried out based on numerical calculations using a one-dimensional hydrodynamic code as applied to ignition of a precompressed target by a shock wave (shock ignition), one of the most promising techniques of laser fusion ignition.

Keywords

gas dynamics ablation pressure converging shock wave inertial confinement fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Shcherbakov, Fiz. Plazmy, 9, 240 (1983).Google Scholar
  2. 2.
    R. Betti, C. D. Zhou, K. S. Anderson, et al., Phys. Rev. Lett., 98, 155001 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    N. V. Zmitrenko and O. R. Rahimly, Preprint No. 55 [in Russian], Keldysh Institute of Applied Mathematics (2016); library.keldysh.ru/preprint.asp?id=2016-55.
  4. 4.
    M. Lafon, H. Ribeyre, and G. Schurtz, Phys. Plasmas, 17, 052704 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    O. Klimo, V. T. Tikhonchuk, X. Ribeyre, et al., Phys. Plasmas, 18, 082709 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    X. Ribeyre, S. Yu. Gus’kov, J.-L. Feugeas, et al., Phys. Plasmas, 20, 062705 (2013).Google Scholar
  7. 7.
    S. Yu. Gus’kov, JETP Lett., 103, 494 (2016).Google Scholar
  8. 8.
    G. Guderley, Luftfahrtforschung, 19, 302 (1942).MathSciNetGoogle Scholar
  9. 9.
    S. A. Gayfullin, A. V. Zakharov, N. V. Zmitrenko, et al., in: Packages of Application Programs. Computational Experiment [in Russian], Nauka, Moscow (1983), p. 50Google Scholar
  10. 10.
    S. I. Braginsky, JETP, 6, 358 (1958).ADSGoogle Scholar
  11. 11.
    A. A. Samarskiy and Yu. P. Popov, Difference Methods for Solving Problems of Gas Dynamics [in Russian], Nauka, Moscow (1992), p. 424.Google Scholar
  12. 12.
    K. P. Stanyukovich, Unsteady Motion of a Continuous Medium [in Russian], Nauka, Moscow (1971).Google Scholar
  13. 13.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed., (Landau and Lifshitz: Course of Theoretical Physics, Volume 6), Pergamon (1987).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Yu. Gus’kov
    • 1
  • N. V. Zmitrenko
    • 2
  • O. R. Rahimli
    • 3
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Moscow RegionRussia

Personalised recommendations