Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 3, pp 231–241 | Cite as

Damping in the Interaction of a Field and Two Three-Level Atoms Through Quantized Caldirola–Kanai Hamiltonian

  • Tarek M. El-Shahat
  • Mohamad Kh. Ismail
  • Abdullah F. Al Naim
Article
  • 30 Downloads

Abstract

We investigate the damped interaction between two Λ-type three-level atoms and a quantized single-mode cavity field, for which the Hamiltonian of the field is rewritten in Caldirola–Kanai form. We obtain the wave functions for the case where the two atoms are initially prepared in arbitrary pure states and the field is initially prepared in the coherent state. We investigate numerically the influence of the damping parameter on the temporal behavior of the Mandel Q-parameter, linear entropy, and normal squeezing. We find the damping parameter and initial atomic states to play central roles in the nonclassical features and the degree of entanglement.

Keywords

three-level atom linear entropy Mandel parameter normal squeezing Caldirola–Kanai approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. T. Jaynes and F. W. Cummings, Proc. IEEE, 51, 89 (1963).CrossRefGoogle Scholar
  2. 2.
    G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett., 58, 353 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    B. W. Shore and P. L. Knight, J. Mod. Opt., 40, 1195 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    V. I. Man’ko and S. S. Safonov, Teor. Mat. Fiz., 112, 467 (1997).CrossRefGoogle Scholar
  5. 5.
    V. V. Dodonov and V. I. Man’ko, Phys. Rev. A, 20, 550 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    O. V. Man’ko, J. Russ. Laser Res., 17, 439 (1996).CrossRefGoogle Scholar
  7. 7.
    V. I. Man’ko, J. Russ. Laser Res., 17, 579 (1996).CrossRefGoogle Scholar
  8. 8.
    A.-S. F. Obada, M. M. A. Obada, E. M. Obada, and S. I. Ali, Opt. Commun., 287, 215 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    F. Yadollahi and M. K. Yadollahi, Opt. Commun., 284, 608 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    M. K. Tavassoly and F. Yadollahi, Int. J. Mod. Phys. B, 26, 1250027 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    M. Sahrai and H. Tajalli, J. Opt. Soc. Am. B., 30, 512 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    H. R. Baghshahi and M. K. Tavassoly, Phys. Scr., 89, 075101 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    V. Buzek, Phys. Rev. A., 39, 3196 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    J. M. Fink, M. Fink, M. Fink, et al., Nature, 454, 315 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    A. Joshi, Phys. Rev. A., 62, 043812 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    E. K. Bashkirov and M. S. Rusakova, Opt. Commun., 281, 4380 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    E. Faraj, M. K. Tavassoly, and H. R. Tavassoly, Int. J. Theor. Phys., 55, 2573 (2016).CrossRefGoogle Scholar
  18. 18.
    H. R. Baghshahi, M. K. Tavassoly, and S. J. Tavassoly, Quantum Inform. Process., 14, 1279 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    D. Tavassoly and M. D. Tavassoly, Quantum Processes, Systems, and Information, Cambridge University Press, New York (2010).zbMATHGoogle Scholar
  20. 20.
    J. R. Choi, S. Lakehal, M. Lakehal, and S. Lakehal, Electromagn. Res. Lett. Prog., 44, 71 (2014).CrossRefGoogle Scholar
  21. 21.
    I. Lakehal and A. Pinheiro, Theor. Phys. Prog., 125, 1133 (2011).CrossRefGoogle Scholar
  22. 22.
    J. R. Choi, Int. J. Theor. Phys., 45, 176 (2006).CrossRefGoogle Scholar
  23. 23.
    J. R. Choi, Pramana., 62, 13 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    S. P. J. Choi, Phys. A: Math. Gen., 36, 12089 (2003).CrossRefGoogle Scholar
  25. 25.
    U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore (1999).CrossRefzbMATHGoogle Scholar
  26. 26.
    M. Razavy, Classical and Quantum Dissipative Systems, World Scientific, Singapore (2005).zbMATHGoogle Scholar
  27. 27.
    E. Kanai, Theor. Phys. Prog., 3, 440 (1948).ADSCrossRefGoogle Scholar
  28. 28.
    P. Caldirola, Nuovo Cimento, 18, 393 (1941).CrossRefGoogle Scholar
  29. 29.
    H. Goldstein, Classical Mechanics, Addison-Wesley, New York (1965).zbMATHGoogle Scholar
  30. 30.
    M. S. Abdalla, Phys. Rev. A, 33, 2870 (1986).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    J. Aliaga, G. Crespo, and A. N. Crespo, Phys. Rev. A, 42, 4325 (1990).ADSCrossRefGoogle Scholar
  32. 32.
    M. S. Abdalla, Phys. Rev. A., 170, 393 (1991).Google Scholar
  33. 33.
    R. Abdalla and M. K. Tavassoly, Int. J. Theor. Phys., 65, 1218 (2017).Google Scholar
  34. 34.
    M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, New York (1997).CrossRefGoogle Scholar
  35. 35.
    R. Daneshmand and M. K. Tavassoly, Laser Phys., 26, 065204 (2016).ADSCrossRefGoogle Scholar
  36. 36.
    J. I. Kim, M. C. Kim, and A. F. R. de Toledo Piza, Quantum Inform. Process., 77, 207 (1996).Google Scholar
  37. 37.
    L. Mandel, J. Russ. Laser Res., 4, 205 (1979).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  2. 2.Physics DepartmentKing Faisal UniversityAlhasa-HofufSaudi Arabia

Personalised recommendations