Advertisement

Journal of Russian Laser Research

, Volume 39, Issue 3, pp 207–215 | Cite as

Quantum Statistical Aspects of Interactions Between the Radiation Field and Two Entangled Two-Level Atoms in the Presence of Stark Shift Terms

  • Eman M. A. Hilal
  • Eied M. Khalil
Article

Abstract

We consider a system consisting of two two-level atoms interacting with a radiation field, including Stark shift terms, and investigate the effect of Stark shift terms on the interaction between the radiation field and the two atoms. Within the framework of the Heisenberg picture, we obtain the general solution to the operator equations of motion. In addition, we derive the general solution obtained by solving the system of differential equations. Some statistical aspects such as atomic inversion and linear entropy are discussed in detail. We study the effect of the time-dependent function on the population inversion and linear entropy. Finally, we examine the linear entropy, concurrence, and quantum and classical correlations for different values of the detuning parameter.

Keywords

two entangled two-level atoms Stark shift linear entropy entropy squeezing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurement, Princeton University Press, NJ (1983).Google Scholar
  2. 2.
    W. H. Zurek, Phys. Today, 44, 36 (1991).CrossRefGoogle Scholar
  3. 3.
    A. O. Caldeira and A. J. Leggett, Physica A, 121, 587 (1983).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Omn‘es, The Interpretation of Quantum Mechanics, Princeton University Press, NJ (1994).Google Scholar
  5. 5.
    J. M. Raimond, M. Brune, and S. Haroche, “Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys., 73, 565 (2001) and references therein.Google Scholar
  6. 6.
    H. E. Brandt, Prog. Quantum Electron., 22, 257 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    S. L. Braunstein, Quantum Computing: Where Do We Want to Go Tomorrow?, Wiley-VCH, New York (1999).Google Scholar
  8. 8.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, New York (2000).Google Scholar
  9. 9.
    D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer-Verlag, Berlin (2000).Google Scholar
  10. 10.
    C. H. Bennett, G. Brassard, C. Crepeau, et al., Phys. Rev. Lett., 70, 1895 (1993).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett., 69, 2881 (1992).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    C. A. Fuchs, N. Gisin, R. B. Griffiths, et al., Phys. Rev. A, 56, 1163 (1997).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    E. T. Jaynes and F. W. Cummings, Proc. IEEE, 51, 89 (1963).CrossRefGoogle Scholar
  14. 14.
    Haifa S. Alqannas and E. M. Khalil, Int. J. Theor. Phys., 56, 2019 (2017).Google Scholar
  15. 15.
    E. M. Khalil, M. S. Abdalla, A.-S. F. Obada, and J. Perina, J. Opt. Soc. Am. B, 27, 266 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    E. M. Khalil, M. S. Abdalla, and A.-S. F. Obada, J. Phys. B: At. Mol. Opt. Phys., 43, 095507 (2010).Google Scholar
  17. 17.
    M. Sebawe Abdalla, M. M. A. Ahmed, E. M. Khalil, and A.-S. F. Obada, J. Russ. Laser Res., 37, 361 (2016).CrossRefGoogle Scholar
  18. 18.
    M. Sebawe Abdalla, E. M. Khalil, and A.-S. F. Obada, Physica A, 466, 44 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    M. Sebawe Abdalla, E. M. Khalil, A.-S. F. Obada, and S. Sanad, J. Russ. Laser Res., 37, 10 (2016).CrossRefGoogle Scholar
  20. 20.
    E. M. Khalil, Int. J. Mod. Phys. B, 30, 5143 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    M. Sebawe Abdalla, E. M. Khalil, and A.-S. F. Obada, Ann. Phys., 11, 2554 (2007).CrossRefGoogle Scholar
  22. 22.
    E. M. Khalil, M. Sebawe Abdalla, and A.-S. F. Obada, Ann. Phys., 321, 421 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    S. J. D. Phoenix and P. L. Knight, Phys. Rev. A, 44, 6023 (1991).ADSCrossRefGoogle Scholar
  24. 24.
    S. J. D. Phoenix and P. L. Knight, Phys. Rev. Lett., 66, 2833 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    S. J. D. Phoenix and P. L. Knight, Ann. Phys., 186, 381 (1988).ADSCrossRefGoogle Scholar
  26. 26.
    A.-S. F. Obada, M. M. A. Ahmed, F. K. Faramawy, and E. M. Khalil, Chaos, Solitons, Fractals, 28, 4 983 (2006).Google Scholar
  27. 27.
    M. Sebawe Abdalla, M. M. A. Ahmed, E. M. Khalil, and A.-S. F. Obada, Ann. Phys., 364, 168 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press (1995).Google Scholar
  29. 29.
    W. K. Wootters, Quantum Inform. Comput., 1, 27 (2001).Google Scholar
  30. 30.
    S. Elkhateeb and E. M. Khalil, J. Russ. Laser Res., 39, 20 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science, Al Faisaliah CampusKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of JeddahJeddahSaudi Arabia
  3. 3.Mathematics Department, Faculty of ScienceTaif UniversityTaif CitySaudi Arabia
  4. 4.Mathematics Department, Faculty of ScienceAl-Azhar UniversityNaser CityEgypt

Personalised recommendations