Advertisement

KOH activation of solid residue of Japanese citron after extraction by microwave process and property as EDLC electrode

  • Toshiki TsubotaEmail author
  • Yukina Hohshi
  • Teruhisa Ohno
  • Satoshi Kumagai
Article
  • 18 Downloads

Abstract

The solid residue of Japanese citron after its compression to obtain juice and then the extraction of oil was used as the raw material of activated carbon in order to substantiate the cascading use of Citrease for several high value products. Most of the inorganic compounds in the carbonized samples were K4H2(CO3)3·1.5 H2O and CaCO3. Although the amount of these inorganic compounds was independent of the carbonization temperature, most of these inorganic compounds were removed by the KOH activation process. The BET specific surface area of the sample after the KOH activation increased with the increasing amount of KOH added for activation, and the value was greater than 1900 m2 g−1 when the amount of KOH was greater than 67 wt%. The pore sizes and pore volumes were calculated by several methods, such as the Langmuir, t method, αs method, MP method, BJH method, and INNES method, in order to analyze in detail the surface condition related to the pores. The capacitance value of the sample activated at KOH 75 wt% was 157 F g−1 at 1 mV s−1.

Keywords

Biochar KOH activation Activated carbon Japanese citron Cascading use 

Notes

Acknowledgements

This study was supported by JSPS KAKENHI Grant Number JP 17K06031. The authors are grateful for JSPS. The raw material used in this study was supported by the Kanematsu Engineering Co., Ltd. The authors are grateful for the Kanematsu Engineering Co., Ltd.

References

  1. 1.
    A. Dabrowski, Adv. Colliod Interface Sci. 93, 135 (2001)CrossRefGoogle Scholar
  2. 2.
    Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23, 4828 (2011)CrossRefGoogle Scholar
  3. 3.
    M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Renew. Sustain. Energy Rev. 46, 218 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Hashemian, K. Salari, Z.A. Yazdi, J. Ind. Eng. Chem. 20, 1892 (2014)CrossRefGoogle Scholar
  5. 5.
    S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma, C.L. Lee, H.A. Chase, J. Clean. Prod. 162, 1376 (2017)CrossRefGoogle Scholar
  6. 6.
    A.E. Nemr, O. Abdelwahab, A. El-Sikaily, A. Khaled, J. Hazard. Mater. 161, 102 (2009)CrossRefGoogle Scholar
  7. 7.
    M.E. Fernandez, G.V. Nunell, P.R. Bonelli, A.L. Cukierman, Ind. Crops Prod. 62, 437 (2014)CrossRefGoogle Scholar
  8. 8.
    E. Koseoglu, C. Akmil-Basar, Adv. Powder Technol. 26, 811 (2015)CrossRefGoogle Scholar
  9. 9.
    K.Y. Foo, B.H. Hameed, Bioresour. Technol. 104, 679 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Xiang, W. Lv, C. Mu, J. Zhao, B. Wang, J. Alloys Compd. 701, 870 (2017)CrossRefGoogle Scholar
  11. 11.
    A.A. Arie, H. Kristianto, M. Halim, J.K. Lee, J. Solid State Electrochem. 21, 1331 (2017)CrossRefGoogle Scholar
  12. 12.
    H. Li, Z. Sun, L. Zhang, Y. Tian, G. Cui, S. Yan, Colloids Surf. A 489, 191 (2016)CrossRefGoogle Scholar
  13. 13.
    K.Y. Foo, B.H. Hameed, Chem. Eng. J. 173, 385 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Wu, L. Cha, Y. Fan, P. Fang, Z. Ming, H. Sha, Water Air Soil Pollut. 228, 405 (2017)CrossRefGoogle Scholar
  15. 15.
    W. Dai, Y. Liu, W. Su, G. Hu, G. Deng, X. Hu, Adsorpt. Sci. Technol. 30, 183 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, H. Huang, Ind. Eng. Chem. Res. 52, 14297 (2013)CrossRefGoogle Scholar
  17. 17.
    T. Tsubota, D. Nagata, S. Kamimura, T. Ohno, J. Nanosci. Nanotechnol. 17, 815 (2017)CrossRefGoogle Scholar
  18. 18.
    T. Tsubota, M. Morita, S. Kamimura, T. Ohno, J. Porous Mater. 23, 349 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Tsubota, M. Morita, S. Kamimura, T. Ohno, J. Porous Mater. 24, 1507 (2017)CrossRefGoogle Scholar
  20. 20.
    T. Tsubota, Y. Maguchi, S. Kamimura, T. Ohno, T. Yasuoka, H. Nishida, J. Electron. Mater. 44, 4933 (2015)CrossRefGoogle Scholar
  21. 21.
    T. Tsubota, K. Ishimoto, S. Kumagai, S. Kamimura, T. Ohno, J. Porous Mater. 25, 1541 (2018)CrossRefGoogle Scholar
  22. 22.
    B.C. Lippens, J.H. de Boer, J. Catal. 4, 319 (1965)CrossRefGoogle Scholar
  23. 23.
    R. Bradley, Adsorpt. Sci. Technol. 29, 1–28 (2011)CrossRefGoogle Scholar
  24. 24.
    D. Momodu, M. Madito, F. Barzegar, A. Bello, A. Khaleed, O. Olaniyan, J. Dangbegnon, N. Manyala, J. Solid State Electrochem. 21, 859 (2017)CrossRefGoogle Scholar
  25. 25.
    D. Momodu, C. Okafor, N. Manyala, A. Bello, M.G. ZebazeKana, E. Ntsoenzok, Waste Biomass Valoriz. 10, 1741 (2019)CrossRefGoogle Scholar
  26. 26.
    Y. Zhou, J. Ren, L. Xia, Q. Zheng, J. Liao, E. Long, F. Xie, C. Xu, D. Lin, Electrochim. Acta 284, 336 (2018)CrossRefGoogle Scholar
  27. 27.
    N. He, S. Yoo, J. Meng, O. Yildiz, P.D. Bradford, S. Park, W. Gao, Carbon 120, 304 (2017)CrossRefGoogle Scholar
  28. 28.
    C. Gong, X. Wang, D. Ma, H. Chen, S. Zhang, Z. Liao, Electrochem. Acta 220, 331 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Toshiki Tsubota
    • 1
    Email author
  • Yukina Hohshi
    • 1
  • Teruhisa Ohno
    • 1
  • Satoshi Kumagai
    • 2
  1. 1.Department of Applied Chemistry, Faculty of EngineeringKyushu Institute of TechnologyKitakyushuJapan
  2. 2.Faculty of AgricultureSaga UniversitySagaJapan

Personalised recommendations