Advertisement

Layered double hydroxide–borate composites supported on magnetic nanoparticles: preparation, characterization and molecular dynamics simulations

  • 23 Accesses

Abstract

Magnetic nanocomposites involving tetraborate ion (TB)-intercalated Mg–Al-layered double hydroxide (LDH) shell supported on magnesium ferrite core particles are synthesized, characterized, and compared with their non-magnetic analogues. The compositions of the obtained nanocomposites were determined and structural investigations were made by powder X-ray diffraction and Fourier transform infrared spectroscopy. Particle characteristics were examined by size distribution, specific surface area measurements, scanning electron microscopy and transmission electron microscopy. Room-temperature magnetic measurements were performed with a vibrating sample magnetometer. The dynamics and structure of the interlayer water molecules and borate ions were studied by molecular dynamics simulations. Analytical and modeling studies verified that the TB ions were arranged between the LDH layers in oblique positions. The products were found to carry ca. 6% boron (1017 B atom/μg nanocomposite). The magnetic nanocomposite showed superparamagnetic properties and can potentially find applications in biomedical fields for the site-specific delivery of bio-potent boron agents.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    V. Rives (ed.), Layered Double Hydroxides: Present and Future (Nova Science Publishers, New York, 2001)

  2. 2.

    B. Zumreoglu-Karan, A.N. Ay, Chem. Papers 66, 1–10 (2012)

  3. 3.

    W. Jiang, J. Wu, R. Tian, J. Porous Mater. 24, 257–265 (2017)

  4. 4.

    K.H. Goh, T.T. Lim, Z. Dong, Water Res 42, 1343–1368 (2008)

  5. 5.

    T. Li, H.N. Miras, Y.F. Song, Catalysts 7, 260–277 (2017)

  6. 6.

    F.L. Theiss, G.A. Ayoko, R.L. Frost, J. Colloid Interface Sci. 402, 114–121 (2013)

  7. 7.

    L. Shi, D. Li, J. Wang, S. Li, D.G. Evans, X. Duan, Clays Clay Miner. 53, 294–300 (2005)

  8. 8.

    G. Elmaci, O. Icten, A.N. Ay, B. Zümreoglu-Karan, Appl. Clay Sci. 107, 117–121 (2015)

  9. 9.

    G. Varga, S. Muráth, Á. Bajcsi, Á. Kukove, Z. Kónya, P. Sipos, I. Pálinkó, Reac. Kinet. Mech. Catal. 121, 241–254 (2017)

  10. 10.

    L. Li, S. Ma, X. Liu, Y. Yue, J. Hui, R. Xu, Y. Bao, J. Rocha, Chem. Mater. 8, 204–208 (1996)

  11. 11.

    M. Del Arco, S. Gutierrez, C. Martin, V. Rives, J. Rocha, J. Solid State Chem. 151, 272–280 (2000)

  12. 12.

    A.N. Ay, B. Zümreoglu-Karan, A. Temel, L. Mafra, Appl. Clay Sci. 51, 308–316 (2011)

  13. 13.

    V. Rives, M. del Arco, C. Martín, Appl. Clay Sci. 88–89, 239–269 (2014)

  14. 14.

    C.D. Hunt, J. Trace Elem. Med. Biol. 26, 157–160 (2012)

  15. 15.

    B.C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S.K. Banerjee, P.V. Veldhuizen, A. Verma, L.M. Weiss, T. Evans, Future Med. Chem. 5, 653–676 (2013)

  16. 16.

    B. Zumreoglu-Karan, D.A. Kose, Pure Appl. Chem. 87, 155–162 (2015)

  17. 17.

    L. Pizzorno, Integr. Med. 14, 35–48 (2015)

  18. 18.

    A.K. García-Ávila, E.D. Farfán-García, J.A. Guevara-Salazar, J.G. Trujillo-Ferrara, M.A. Soriano-Ursúa, World J. Transl. Med. 12, 1–9 (2017)

  19. 19.

    E. Hey-Hawkins, C. VinasTeixidor (eds.), Boron Based Compounds: Potential and Emerging Applications in Medicine (Wiley, Hoboken, 2018)

  20. 20.

    N.S. Hosmane, Boron Science: New Technologies and Applications (CRC Press, Boca Raton, 2011), p. 147

  21. 21.

    A.N. Ay, H. Akar, A. Zaulet, C. Viňas, F. Teixidor, B. Zumreoglu-Karan, Dalton Trans. 46, 3303–3310 (2017)

  22. 22.

    G. Choi, I.-R. Jeon, H. Piao, J.-H. Choy, Adv. Funct. Mater. 28, 1704470 (2017)

  23. 23.

    W.W. Ku, R.E. Chapin, R.F. Moseman, R.E. Brink, K.D. Pierce, K.Y. Adams, Toxicol. Appl. Pharmacol. 111, 145–151 (1991)

  24. 24.

    C.D. Hunt, in Encyclopedia of Dietary Supplements, ed. by P.M. Coates, M.R. Blackman, G.M. Cragg, M. Levine, J. Moss, J.D. White, 2nd ed. (CRC Press, New York, 2004) p. 55.

  25. 25.

    H. Kempe, S.A. Kates, M. Kempe, Expert Rev. Med. Devices 8, 291–294 (2011)

  26. 26.

    J. Cabrera-González, L. Cabana, B. Ballesteros, G. Tobias, R. Núñez, Chem. Eur. J. 22, 5096–5101 (2016)

  27. 27.

    O. Icten, N. Hosmane, D.A. Kose, B. Zumreoglu-Karan, New J. Chem. 41, 3646–3652 (2017)

  28. 28.

    E. Oleshkevich, F. Teixidor, A. Rosell, C. Vinas, Inorg. Chem. 57, 462–470 (2018)

  29. 29.

    O. Icten, D.A. Kose, S.J. Matissek, J.A. Misurelli, S.F. Elsawa, N.S. Hosmane, B. Zumreoglu-Karan, Mater. Sci. Eng. C 92, 317–328 (2018)

  30. 30.

    A.N. Ay, D. Konuk, B. Zumreoglu-Karan, Mater. Sci. Eng. C 31, 851–857 (2011)

  31. 31.

    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, 2nd edn. (Oxford University Press, New York, 2017)

  32. 32.

    P.P. Kumar, A.G. Kalinichev, R.J. Kirkpatrick, J. Phys. Chem. C. 111, 13517–13523 (2007)

  33. 33.

    A.G. Kalinichev, P.P. Kumar, R.J. Kirkpatrick, Phil. Mag. 90, 2475–2488 (2010)

  34. 34.

    M. Bellotto, B. Rebours, O. Clause, J. Lynch, D. Bazin, E. Elkaim, J. Phys. Chem. 100, 8527–8534 (1996)

  35. 35.

    M. Vucelic, W. Jones, G.D. Moggridge, Clays Clay Miner. 45, 803–813 (1997)

  36. 36.

    K. Yao, M. Taniguchi, M. Nakata, M. Takahashi, A. Yamagishi, Langmuir 14, 2410–2414 (1998)

  37. 37.

    R.T. Cygan, J.J. Liang, A.G. Kalinichev, J. Phys. Chem. B 108, 1255–1266 (2004)

  38. 38.

    S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897–8909 (1990)

  39. 39.

    A.K. Rappe, W.A. Goddard, J. Phys. Chem. 95, 3358–3363 (1991)

  40. 40.

    S.P. Newman, T. Di Cristina, P.V. Coveney, W. Jones, Langmuir 18, 2933–2939 (2002)

  41. 41.

    R.J. Kirkpatrick, A.G. Kalinichev, J. Wang, X. Hou, J.E. Amonette, Molecular modeling of the vibrational spectra of interlayer and surface species of layered double hydroxides, in The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides, ed. by J.T. Kloprogge (The Clay Mineral Society, Aurora, 2005), pp. 239–285

  42. 42.

    BIOVIA, Inc. (2017), https://accelrys.com/products/datasheets/materials-studio-overview.pdf

  43. 43.

    F. Cavani, F. Trifiro, A. Vaccari, Catal. Today 11, 173–301 (1991)

  44. 44.

    A.N. Ay, B. Zumreoglu-Karan, A. Temel, Microporous Mesoporous Mater. 98, 1–5 (2007)

  45. 45.

    N.T. Whilton, P.J. Vickers, S. Mann, J. Mater. Chem. 7, 1623–1629 (1997)

  46. 46.

    N. Morimoto, Mineral. J. 2, 1–18 (1956)

  47. 47.

    C. Weir, J. Res. NBS-A 70, 153–164 (1966)

  48. 48.

    C.G. Salentine, Inorg. Chem. 22, 3920–3924 (1983)

  49. 49.

    J.M. Simon, R.A. Smith, Glass Technol. 41, 169–173 (2000)

  50. 50.

    M.A. Beckett, A. Davies, C.D. Thomas, Comput. Theor. Chem. 1044, 74–79 (2014)

  51. 51.

    F.M. Labajos, V. Rives, M.A. Ulibarri, J. Mater. Sci. 27, 1546–1552 (1992)

  52. 52.

    R.J. Kirkpatrick, A.G. Kalinichev, X. Hou, L. Struble, Mater. Struct. 38, 449–458 (2005)

  53. 53.

    B.F. Ngouana-Wakou, A.G. Kalinichev, J. Phys. Chem. C 118, 12758–12773 (2014)

  54. 54.

    M. del Arco, V. Rives, R. Trujillano, Stud. Surf. Sci. Catal. 87, 507–515 (1994)

  55. 55.

    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051–1069 (2015)

  56. 56.

    A. Weibel, R. Bouchet, F. Boulch, P. Knauth, Chem. Mater. 17, 2378–2385 (2005)

  57. 57.

    H. Zhang, K. Zou, H. Sun, X. Duan, J. Solid. State. Chem. 178, 3485–3493 (2005)

  58. 58.

    J. Liu, F. Li, D. G. Evans, X. Duan, Chem. Commun. 542–543 (2003)

  59. 59.

    S. Zanganeh, J.Q. Ho, M. Aieneravaie, M. Erfanzadeh, M. Pauliah, R. Spitler, in Iron Oxide Nanoparticles for Biomedical Applications, ed. by M. Mahmoudi, S. Laurent (Elsevier, Oxford, 2018), pp. 247–271

  60. 60.

    A. Datt, N. Ndiege, S.C. Larsen, in Nanomaterials for Biomedicine, ed. by R. Nagarajan, ACS Symposium Series 1119, pp. 239–258 (2012)

  61. 61.

    A.H. Faraji, P. Wipf, Bioorg. Med. Chem. 17, 2950–2962 (2009)

Download references

Acknowledgements

This work has been supported by Hacettepe University through project: 012 01 601 002. A.G.K. also acknowledges support of the Basic Research Program at the National Research University Higher School of Economics within the framework of a subsidy by the Russian Academic Excellence Project “5-100”.

Author information

Correspondence to Ahmet Nedim Ay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Powder XRD patterns, FT-IR spectra and TGA/D-TGA curves of NO3–LDH, TB–LDH, NO3–LDH /MF and TB–LDH/MF, Particle size distribution curves of TB–LDH and TB–LDH/MF. A complete list of the force field parameters describing the energy of interatomic interactions in the simulated systems is also provided in Supplementary Information together with the description of how these parameters were used in the present calculations. Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 912 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ay, A.N., Zumreoglu-Karan, B., Kalinichev, A.G. et al. Layered double hydroxide–borate composites supported on magnetic nanoparticles: preparation, characterization and molecular dynamics simulations. J Porous Mater (2020) doi:10.1007/s10934-019-00853-4

Download citation

Keywords

  • Magnetic nanocomposites
  • Layered double hydroxides
  • Intercalation
  • Boron
  • Borate composites
  • Molecular dynamics simulations