Advertisement

Cleaner continuous flow production of mesoporous calcium-magnesium silicate as a potential biomaterial

  • Chun Hui ZhouEmail author
  • Shu Ting Xia
  • Sridhar Komarneni
  • Freeman Bwalya Kabwe
  • Gui Chen Jin
  • Mao Quan Chu
Article
  • 19 Downloads

Abstract

Dolomite is an abundant, naturally occurring carbonate mineral, but the conventional processes of converting dolomite to new materials are time-consuming and energy-intensive. In addition, products from dolomite such as magnesium oxide, magnesium carbonate, magnesium hydroxide, which are used as adsorbents and additives, are mostly low value-added. Here, we demonstrated the conversion of dolomite to a mesoporous calcium-magnesium silicate (m-CMS) using a green and efficient continuous-flow synthesis method. The samples were characterized using powder X-ray diffraction, Fourier transformed infrared spectroscopy, N2 adsorption/desorption isotherms, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The material possessed mesoporosity and exhibited high a specific surface area of 629 m2/g and a pore volume of 0.66 cm3/g. The maximum water absorptivity of the sample was 52.6%. After the m-CMS immersing in Tris–HCl solution for 56 days, the weight loss ratio reached 30 wt%, indicating its good potential biodegradability. Hydroxyapatite was formed on the surfaces after the m-CMS was immersed in simulated body fluids. The m-CSM provided nucleation sites, and subsequently supplied Ca2+ for hydroxyapatite crystal growth, indicating that the material has potential bone conduction capability. This work suggests that m-CMS can be synthesized from dolomite and tetraethyl orthosilicate through a quick continuous process, and that the m-CMS could be used as a biomaterial.

Keywords

Dolomite Mesoporous calcium-magnesium silicate Continuous process Biodegradability Biocompatibility 

Notes

Acknowledgements

The authors wish to acknowledge the financial support from the National Natural Scientific Foundation of China (41672033), the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology (GCTKF2014006), and Institute of Life Science and Technology of Tongji University. The authors wish to acknowledge the financial support from the open fund from Key Laboratory of Clay Minerals of Ministry of Land and Resources of the People’s Republic of China, Engineering Research Center of Non-metallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resource, China (ZD2018K05). CHZ conceived of the study. GCJ conducted the experiments, provided the data and drafted the paper and then STX finalized the paper for submission and proofread the paper. All the work is with extensive discussion and input from CHZ. SK, FBK and MQC provided assistance during the work.

References

  1. 1.
    J.M. Gregg, D.L. Bish, S.E. Kaczmarek, H.G. Machel, C. Hollis, Nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology 62(6), 1749–1769 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Sharifi-Yazdi, H. Rahimpour-Bonab, V. Tavakoli, M. Nazemi, M.R. Kamali, Linking diagenetic history to depositional attributes in a high-frequency sequence stratigraphic framework: a case from upper Jurassic Arab formation in the central Persian Gulf. J. Afr. Earth Sc. 153, 91–110 (2019)CrossRefGoogle Scholar
  3. 3.
    M.A. Bustillo, I. Armenteros, P. Huerta, Dolomitization, gypsum calcitization and silicification in carbonate-evaporite shallow lacustrine deposits. Sedimentology 64(4), 1147–1172 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Gruszecka-Kosowska, P. Baran, M. Wdowin, W. Franus, Waste dolomite powder as an adsorbent of Cd, Pb(II), and Zn from aqueous solutions. Environ. Earth Sci. 76(15), 521 (2017)CrossRefGoogle Scholar
  5. 5.
    Ayoub & Kalinian, Removal of low-concentration phosphorus using a fluidized raw dolomite bed. Water Environ. Res. 78(4), 353–361 (2006)PubMedCrossRefGoogle Scholar
  6. 6.
    S.M. Ashekuzzaman, J.Q. Jiang, Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water. Chem. Eng. J. 246, 97–105 (2014)CrossRefGoogle Scholar
  7. 7.
    G.I. Antonov, V.P. Nedosvitii, A.S. Kulik, Stabilized dolomite refractories. Refactoties Ind. Ceram. 45(3), 161–164 (2004)Google Scholar
  8. 8.
    L.M. Correia, N.D. Campelo, D.S. Novaes, C.L. Cavalcante, J.A. Cecilia, E. Rodriguez-Castellon, R.S. Vieira, Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chem. Eng. J. 269, 35–43 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Shaaban, Y. Wu, Q. Peng, L. Wu, L. Van Zwieten, M.S. Khalid, A. Younas, S. Lin, J. Zhao, S. Bashir, M. Zafar-ul-hye, M. Abid, R. Hu, The interactive effects of dolomite application and straw incorporation on soil N2O emissions. Eur. J. Soil Sci. 69(3), 502–511 (2018)CrossRefGoogle Scholar
  10. 10.
    E.M.M. Ewais, I.M.I. Bayoumi, Fabrication of MgO-CaZrO3 refractory composites from Egyptian dolomite as a clinker to rotary cement kiln lining. Ceram. Int. 44(8), 9236–9245 (2018)CrossRefGoogle Scholar
  11. 11.
    Z. Wang, J. Liu, F. Rao, Preparation of high purity basic magnesium carbonate with light-burned dolomite by twice-carbonation method. J. Chin. Ceram. Soc. 41(10), 1437–1441 (2013)Google Scholar
  12. 12.
    M. Halmann, A. Frei, A. Steinfeld, Magnesium production by the Pidgeon process involving dolomite calcination and MgO silicothermic reduction: thermodynamic and environmental analyses. Ind. Eng. Chem. Res. 47(7), 2146–2154 (2008)CrossRefGoogle Scholar
  13. 13.
    N. Mao, C.H. Zhou, J. Keeling, S. Fiore, H. Zhang, L. Chen, G.C. Jin, T.T. Zhu, D.S. Tong, W.H. Yu, Tracked changes of dolomite into Ca-Mg-Al layered double hydroxide. Appl. Clay Sci. 159, 25–36 (2018)CrossRefGoogle Scholar
  14. 14.
    G. Mishra, B. Dash, S. Pandey, Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 153, 172–186 (2018)CrossRefGoogle Scholar
  15. 15.
    Y.M. Lai, H. Su, G. Wang, X.L. Tang, X.F. Liang, X. Huang, Y.X. Li, H.W. Zhang, C. Ye, X.R. Wang, Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping. J. Alloys Compd. 772, 40–48 (2019)CrossRefGoogle Scholar
  16. 16.
    M.H. Wang, H.B. Zhong, Y.C. Fan, T. Chen, Spark plasma sintering of bioactive Ca2MgSi2O7 ceramics. J. Inorg. Mater. 32(8), 825–830 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Huang, M. Zhang, D. Yao, X. Chen, X. Pu, X. Liao, Z.B. Huang, G.F. Yin, Dissolution behavior of CaO–MgO–SiO2-based bioceramic powders in simulated physiological environments. Ceram. Int. 43(13), 9583–9592 (2017)CrossRefGoogle Scholar
  18. 18.
    G.F. Hu, L.W. Xiao, H. Fu, D.W. Bi, H.T. Ma, P.J. Tong, Degradable and bioactive scaffold of calcium phosphate and calcium sulphate from self-setting cement for bone regeneration. J. Porous Mater. 17(5), 605–613 (2010)CrossRefGoogle Scholar
  19. 19.
    Wuhrer, J., Kurczyk H.G., Ottenheym, A., 1973, Process for Producing Hydrates of Calcium-magnesium Silicates. US, US3770475Google Scholar
  20. 20.
    R.P. Sreekanth Chakradhar, B.M. Nagabhushana, G.T. Chandrappa, K.P. Ramesh, J.L. Rao, Solution combustion derived nanocrystalline macroporous wollastonite ceramics. Mater. Chem. Phys. 95(1), 169–175 (2006)CrossRefGoogle Scholar
  21. 21.
    R. Choudhary, S. Koppala, S. Swamiappan, Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. J. Asian Ceram. Soc. 3(2), 173–177 (2015)CrossRefGoogle Scholar
  22. 22.
    K.L. Lin, J. Chang, J.X. Lu, Synthesis of wollastonite nanowires via hydrothermal microemulsion methods. Mater. Lett. 60(24), 3007–3010 (2006)CrossRefGoogle Scholar
  23. 23.
    S. Vichaphund, M. Kitiwan, D. Atong, P. Thavorniti, Microwave synthesis of wollastonite powder from eggshells. J. Eur. Ceram. Soc. 31(14), 2435–2440 (2011)CrossRefGoogle Scholar
  24. 24.
    A.K. Sharafabadi, M. Abdellahi, A. Kazemi, A. Khandan, N. Ozada, A novel and economical route for synthesizing akermanite (Ca2MgSi2O7) nano-bioceramic. Mater. Sci. Eng., C 71, 1072–1078 (2017)CrossRefGoogle Scholar
  25. 25.
    K.L. Lin, J. Chang, G.F. Chen, M.L. Ruan, C.Q. Ning, A simple method to synthesize single-crystalline β-wollastonite nanowires. J. Cryst. Growth 300(2), 267–271 (2007)CrossRefGoogle Scholar
  26. 26.
    S. Rossi, A. Puglisi, D. Intrieri, E. Gallo, From anilines to aziridines: a two-step synthesis under continuous-flow conditions. J. Flow Chem. 6(3), 1–6 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Diez-Garcia, J.J. Gaitero, J.S. Dolado, C. Aymonier, Ultra-fast supercritical hydrothermal synthesis of tobermorite under thermodynamically metastable conditions. Angew. Chem. Int. Ed. 56(12), 3162–3167 (2017)CrossRefGoogle Scholar
  28. 28.
    Z.Y. Tang, H.O. Qiu, H.T. Zheng, Analysis of rocks and minerals. Chin. J. Anal. Lab. 25(9), 112–122 (2006)Google Scholar
  29. 29.
    T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. A 24(6), 721–734 (1990)CrossRefGoogle Scholar
  30. 30.
    J. Ma, C.Z. Chena, D.G. Wang, X. Shao, C.Z. Wang, H.M. Zhang, Effect of MgO addition on the crystallization and in vitro bioactivity of glass ceramics in the CaO–MgO–SiO2–P2O5 system. Ceram. Int. 38, 6677–6684 (2012)CrossRefGoogle Scholar
  31. 31.
    G. Hu, S.P. Xu, S.G. Li, C.R. Xiao, S.Q. Liu, Steam gasification of apricot stones with olivine and dolomite as downstream catalysts. Fuel Process. Technol. 87(5), 375–382 (2006)CrossRefGoogle Scholar
  32. 32.
    Z.B. Zhang, W.B. Nie, Q. Li, G.X. Xiong, X.H. Cao, Y.H. Liu, Removal of uranium (VI) from aqueous solutions by carboxyl-rich hydrothermal carbon spheres through low-temperature heat treatment in air. J. Radioanal. Nucl. Chem. 298, 361–368 (2013)CrossRefGoogle Scholar
  33. 33.
    L.A. Zemnukhova, A.E. Panasenko, E.A. Tsoi, G.A. Fedorishcheva, N.P. Shapkin, A.P. Artem’Yanov, VYu. Maiorov, Composition and structure of amorphous silica produced from rice husk and straw. Inorg. Mater. 50(1), 75–81 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic–inorganic nanocomposite materials. Chem. Mater. 13(10), 3169–3183 (2001)CrossRefGoogle Scholar
  35. 35.
    F. Ambroz, T.J. Macdonald, V. Martis, I.P. Parkin, Evaluation of the BET Theory for the characterization of meso and microporous MOFs. Small Methods 2(11), 1800173 (2018)CrossRefGoogle Scholar
  36. 36.
    P. Habibovic, H. Yuan, C.M. van der Valk, G. Meijer, C.A. van Blitterswijk, K. de Groot, 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26(17), 3565–3575 (2005)PubMedCrossRefGoogle Scholar
  37. 37.
    R. Choudhary, J. Vecstaudza, G. Krishnamurithy, H.R. Raghavendran, M.R. Murali, T. Kamarul, S. Swamiappan, J. Locs, In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol-gel combustion method. Mater. Sci. Eng., C 68, 89–100 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Lee, H.S. Yun, S.H. Kim, The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 32, 9434–9443 (2011)PubMedCrossRefGoogle Scholar
  39. 39.
    Z.Y. Wu, T.T. Tang, H. Guo, S.C. Tang, Y.F. Niu, J. Zhang, W.J. Zhang, R. Ma, J.C. Su, C.S. Liu, J. Wei, In vitro degradability, bioactivity and cell responses to mesoporous magnesium silicate for the induction of bone regeneration. Colloids Surf. B 120, 38–46 (2014)CrossRefGoogle Scholar
  40. 40.
    S.P. Hudson, R.F. Padera, R. Langer, D.S. Kohane, The biocompatibility of mesoporous silicates. Biomaterials 29(30), 4045–4055 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    P. Kalia, G. Vizcay-Barrena, J.P. Fan, A. Warley, L. Di Silvio, J. Huang, Nanohydroxyapatite shape and its potential role in bone formation: an analytical study. J. R. Soc. Interface 11(93), 20140004 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    X.T. Shi, Y.J. Wang, L. Ren, N.R. Zhao, Y.H. Gong, D.A. Wang, Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater. 5(5), 1697–1707 (2009)PubMedCrossRefGoogle Scholar
  43. 43.
    X. Wu, J. Wei, X. Lu, Y. Lv, F. Chen, Y. Zhang, C. Liu, Chemical characteristics and hemostatic performances of ordered mesoporous calcium-doped silica xerogels. Biomed. Mater. 5(3), 1748–1757 (2010)CrossRefGoogle Scholar
  44. 44.
    Z. Chen, X. Li, H. He, Z. Ren, Y. Liu, J. Wang, Z. Li, G. Shen, G.R. Han, Mesoporous silica nanoparticles with manipulated microstructures for drug delivery. Colloids Surf. B 95(2), 274–278 (2012)CrossRefGoogle Scholar
  45. 45.
    A. Salinas, M. Valletregi, Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv. 3(28), 11116–11131 (2013)CrossRefGoogle Scholar
  46. 46.
    Reddy M. Narasimha, K. Cheralathan, S. Sasikumar, In vitro bioactivity and drug release kinetics studies of mesoporous silica-biopolymer composites. J. Porous Mater. 22(6), 1465–1472 (2015)CrossRefGoogle Scholar
  47. 47.
    Y.T. Ding, S.C. Tang, B.Q. Yu, Y.G. Yan, H. Li, J. Wei, J.C. Su, In vitro degradability, bioactivity and primary cell responses to bone cements containing mesoporous magnesium–calcium silicate and calcium sulfate for bone regeneration. J. R. Soc. Interface 12(111), 20150779 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    L. Xia, J.L. Shi, Y.F. Zhu, W.H. Shen, H. Li, J. Liang, J.H. Gao, A template route to the preparation of mesoporous amorphous calcium silicate with high in vitro bone-forming bioactivity. J. Biomed. Mater. Res. B 83B(2), 431–439 (2007)CrossRefGoogle Scholar
  49. 49.
    L.L. Hench, Bioceramics-from concept to clinic. J. Am. Ceram. Soc. 74(7), 1487–1510 (1991)CrossRefGoogle Scholar
  50. 50.
    C.T. Wu, Z. Chen, D.L. Yi, J. Chang, Y. Xiao, Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis. ACS Appl. Mater. Interfaces. 6(6), 4264–4276 (2014)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chun Hui Zhou
    • 1
    • 4
    Email author
  • Shu Ting Xia
    • 1
  • Sridhar Komarneni
    • 3
  • Freeman Bwalya Kabwe
    • 1
  • Gui Chen Jin
    • 1
  • Mao Quan Chu
    • 2
  1. 1.Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.Institute of Life Science and TechnologyTongji UniversityShanghaiChina
  3. 3.Department of Ecosystem Science and Management and Materials Research Institute, 204 Energy and the Environment LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.Qing Yang Institute for Industrial MineralsChi ZhouChina

Personalised recommendations