Advertisement

Removal of pharmaceuticals and personal care products (PPCPs) from water by adsorption on aluminum pillared clay

  • Manisha Chauhan
  • Vipin K. SainiEmail author
  • Surindra Suthar
Article
  • 12 Downloads

Abstract

The natural layered clay-based materials offer a sustainable approach for removal of emerging pollutants from the environment. Their low-capacity and poor-selectivity for pollutants often limit their uses. This limitation is addressed in this study with the help of Al-oxide pillaring approach. Here microporous aluminum-pillared clay (Al-PILC) was prepared from locally available Smectite clay (montmorillonite, MMT), by intercalation of Al-oxide pillars into the interlayer structure. The method increased the surface area of natural clay to 258 m2 g−1 and its porosity to 0.16 cm3 g−1. The adsorptive removal properties of prepared Al-PILC was evaluated on two selected pharmaceuticals and personal care products (PPCPs) viz. amoxicillin (AMOX) and imipramine (IMP). The results of the removal of these PPCPs were compared as a function of contact time (0–180 min), solution pH (2–12), initial concentration (0–100 mg L−1), and temperature (298–318 K). The Al-PILC adsorbs 332% more IMP and 681% more AMOX as compared to natural clay, and the maximum adsorption amounts on Al-PILC follows the order IMP > AMOX with 59.8 and 7.7 mg g−1, respectively. The kinetics of adsorption of both AMOX and IMP follow pseudo-second-order model, with intraparticle diffusion as rate-determining step. The incorporated acidic sites in clay (in form of Al2O3 pillars) enhanced its adsorption properties. These sites interacted with protonated amine and –OH groups of AMOX and the tertiary amine group of IMP. The Al-PILC exhibit effective regeneration and was reused up to three consecutive adsorption/desorption cycles. All in all, this study is expected to expand the application of Al-PILC on the adsorptive removal of the emerging pollutant from contaminated water.

Keywords

Antibiotics Pharmaceutical pollution Selectivity Microporous clay Reusability 

Notes

Acknowledgements

The Authors acknowledge the financial support of UGC and SERB-DST India for research grants MRP-MAJOR-ENVI-2013–35206, ECR/2017/001266, and Doon University, Dehradun for research infrastructure.

Supplementary material

10934_2019_817_MOESM1_ESM.docx (2.7 mb)
Supplementary file1 (DOCX 2752 kb)

References

  1. 1.
    L. Artok, H. Schobert, P.B. Malla, S. Komarneni, Intercalated metal-clay catalysts in direct liquefaction of bituminous coal. Energy Fuels 7, 430–431 (1993).  https://doi.org/10.1021/ef00039a016 CrossRefGoogle Scholar
  2. 2.
    B.M. Babić, S.K. Milonjić, M.J. Polovina, B.V. Kaludierović, Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon 37, 477–481 (1999).  https://doi.org/10.1016/S0008-6223(98)00216-4 CrossRefGoogle Scholar
  3. 3.
    M. Bagheri, M. Mohseni, A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water. J. Hazard. Mater. 294, 1–8 (2015).  https://doi.org/10.1016/j.jhazmat.2015.03.036 CrossRefPubMedGoogle Scholar
  4. 4.
    F. Baquero, J.L. Martinez, R. Canton, Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19(3), 260–265 (2008).  https://doi.org/10.1016/j.copbio.2008.05.006 CrossRefPubMedGoogle Scholar
  5. 5.
    A. Bebu, L. Szabo, N. Leopold, C. Berindean, L. David, IR, Raman, SERS and DFT study of amoxicillin. J. Mol. Struct. 993, 52–56 (2011).  https://doi.org/10.1016/j.molstruc.2010.11.067 CrossRefGoogle Scholar
  6. 6.
    F. Bergaya, G. Lagaly, Chapter 1: General Introduction: clays, clay minerals and clay science in handbook of clay science, 1st ed. Developments in Clay Science, vol. 1. (Elsevier, The Netherlands, 2006), pp. 1–18. https://doi.org/10.1016/S1572-4352(05)01001-9.Google Scholar
  7. 7.
    A.B.A. Boxall, D.W. Kolpin, B. Halling-Sorensen, J. Tolls, Are veterinary medicines causing environmental risks? Environ. Sci. Technol. 37(15), 286a–294a (2003).  https://doi.org/10.1021/es032519b CrossRefPubMedGoogle Scholar
  8. 8.
    S.Y. Chun, W.J. Chung, S.S. Kim, J.T. Kim, S.W. Chang, Optimization of the TiO2/Ge composition by the response surface method of photocatalytic degradation under ultraviolet– irradiation and the toxicity reduction of amoxicillin. J. Ind. Eng. Chem. 27, 291–296 (2015).  https://doi.org/10.1016/j.jiec.2015.01.003 CrossRefGoogle Scholar
  9. 9.
    Del Castillo, H.L., Grange, P., 1993. Preparation and catalytic activity of titanium pillared montmorillonite. Appl. Catal. A.103,23–34. https://doi.org/10.1016/0926-860X(93)85170-T.CrossRefGoogle Scholar
  10. 10.
    X.V. Doorslaer, J. Dewulf, H.V. Langenhove, K. Demeestere, Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci. Total Environ. 500–501, 250–269 (2014).  https://doi.org/10.1016/j.scitotenv.2014.08.075 CrossRefPubMedGoogle Scholar
  11. 11.
    E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin & cloxacillin antibiotics in aqueous solution using UV/TiO2 photocatalysis. Desalination 252, 46–52 (2010).  https://doi.org/10.1016/j.desal.2009.11.003 CrossRefGoogle Scholar
  12. 12.
    H. Fazelirad, M. Ranjbar, M.A. Taher, G. Sargazi, Preparation of magnetic multiwalled carbon nanotubes for an efficient adsorption and spectrophotometric determination of amoxicillin. J. Ind. Eng. Chem. 21, 889–892 (2015).  https://doi.org/10.1016/j.jiec.2014.04.028 CrossRefGoogle Scholar
  13. 13.
    H. Freundlich, Over the adsorption in solution. J. Phys. Chem. 57, 385–470 (1906).  https://doi.org/10.1515/zpch-1907-5723 CrossRefGoogle Scholar
  14. 14.
    N.D. García, A.Z. Gómez, S. Cantarero, A. Navalón, J.L. Vílchez, Simultaneous determination of 13 quinoline antibiotic derivatives in waste water samples using solid-phase extraction and ultra-performance liquid chromatography–tandem mass spectrometry. Micro chem. J. 106, 323–333 (2013).  https://doi.org/10.1016/j.microc.2012.09.002 CrossRefGoogle Scholar
  15. 15.
    R.K. George, S.T. Howard, R.E. Joseph, S.D.V. SIVA, Ion-Exchange Method for the Determination of Plasma Ammonia Nitrogen with the Berthelot Reaction. Std. Method Clinic. Chem. 6, 115–126 (1970).  https://doi.org/10.1016/B978-0-12-609106-9.50017-8 CrossRefGoogle Scholar
  16. 16.
    S.M. Ghnimi, N.F. Srasra, Promoting effect of cerium on the characteristic and catalytic activity of Al, Zr, and Al–Zr pillared clay. Appl. Clay Sci. 88–89, 214–220 (2014).  https://doi.org/10.1016/j.clay.2013.10.030 CrossRefGoogle Scholar
  17. 17.
    A. Gill, F.C.C. Assis, S. Albeniz, S.A. Korili, Removal of dyes from waste waters by adsorption on pillared clays. Chem. Engg. J. 168, 1032–1040 (2011).  https://doi.org/10.1016/j.cej.2011.01.078 CrossRefGoogle Scholar
  18. 18.
    A. Gill, M. Montes, Analysis of the microporosity in pillared clays. Langmuir 10, 291–297 (1995).  https://doi.org/10.1021/la00013a043 CrossRefGoogle Scholar
  19. 19.
    D.L. Guerra, C. Airoldi, V.P. Lemos, R.S. Angelica, Adsorptive, thermodynamic and kinetic performances of Al/Ti and Al/Zr-pillared clays from Brazilian Amazon region for zinc cation removal. J. Hazard. Mater. 155, 230–242 (2008).  https://doi.org/10.1016/j.jhazmat.2007.11.054 CrossRefPubMedGoogle Scholar
  20. 20.
    Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999).  https://doi.org/10.1016/S0032-9592(98)00112-5 CrossRefGoogle Scholar
  21. 21.
    V. Homem, A. Alves, L. Santos, Amoxicillin degradation at ppb levels by Fenton’s oxidation using design of experiments. Sci. Total Environ. 408, 6272–6280 (2010).  https://doi.org/10.1016/j.scitotenv.2010.08.058 CrossRefPubMedGoogle Scholar
  22. 22.
    K. Ikehata, N.J. Naghashkar, M.G. El-Din, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Sci. Eng. 2(6), 353–414 (2006).  https://doi.org/10.1080/01919510600985937 CrossRefGoogle Scholar
  23. 23.
    M.E.R. Jalil, M. Baschini, E.R. Castellon, Effect of Al/Clay ratio on the thiabendazol by aluminium pillared clays. Appl. Clay Sci. 87, 245–253 (2014).  https://doi.org/10.1016/j.clay.2013.11.014 CrossRefGoogle Scholar
  24. 24.
    D. Kanakaraju, J. Kockler, C.A. Motti, B.D. Glass, M. Oelgemoller, Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Appl. Catal. B. 166–167, 45–55 (2015).  https://doi.org/10.1016/j.apcatb.2014.11.001 CrossRefGoogle Scholar
  25. 25.
    D. Karamanis, P.A. Assismakopoulos, Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions. Water Res. 41, 1897–1906 (2007).  https://doi.org/10.1016/j.watres.2007.01.053 CrossRefPubMedGoogle Scholar
  26. 26.
    J.T. Kloprogge, Synthesis of smectites and porous pillared clay catalysts: a review. J. Porous. Mater. 5, 5–41 (1998).  https://doi.org/10.1023/A:100962591 CrossRefGoogle Scholar
  27. 27.
    V. Kuroki, G.E. Bosco, P.S. Fadini, A.A. Mozeto, Use of a La (III)-modified bentonite for effective phosphate removal from aqueous media. J. Hazard. Mater. 274, 124–131 (2014).  https://doi.org/10.1016/j.jhazmat.2014.03.023 CrossRefPubMedGoogle Scholar
  28. 28.
    S. Lagergren, Zur Theorie der Sogenannten Adsorption Gelöster Stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar. 24, 1–39 (1898)Google Scholar
  29. 29.
    I. Langmuir, The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Amer. Chem. Soc. 38, 2221–2295 (1916).  https://doi.org/10.1021/ja02268a002 CrossRefGoogle Scholar
  30. 30.
    S. Li, X. Li, D. Wang, Membrane (RO–UF) filtration for antibiotic waste water treatment and recovery of antibiotics. Sep. Purif. Technol. 34, 109–114 (2004).  https://doi.org/10.1016/S1383-5866(03)00184-9 CrossRefGoogle Scholar
  31. 31.
    P.B. Malla, S. Komarneni, Synthesis of highly microporous and hydrophilic alumina-pillared montmorillonite: water sorption properties. Clays Clay Miner 38, 363–372 (1990).  https://doi.org/10.1346/CCMN.1990.0380405 CrossRefGoogle Scholar
  32. 32.
    P.B. Malla, P. Ravindranathan, S. Komarneni, R. Roy, Intercalation of copper metal clusters in montmorillonite. Nature 351, 555–557 (1991).  https://doi.org/10.1038/351555a0 CrossRefGoogle Scholar
  33. 33.
    P.B. Malla, S. Komarneni, Properties and characterization of Al2O3 and SiO2-TiO2 pillared saponite. Clays & Clay Miner. 41, 472–483 (1993).  https://doi.org/10.1346/CCMN.1993.0410408 CrossRefGoogle Scholar
  34. 34.
    D.M. Manohar, B.F. Noeline, T.S. Anirudhan, Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase. Appl. Clay Sci. 31, 194–206 (2006).  https://doi.org/10.1016/j.clay.2005.08.008 CrossRefGoogle Scholar
  35. 35.
    H. Mansouri, R.J. Carmona, A. Gomis-Berenguer, S. Souissi-Najar, A. Quederni, C.O. Ania, Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. J. Colloid Interface Sci. 449, 252–260 (2015).  https://doi.org/10.1016/j.jcis.2014.12.020 CrossRefPubMedGoogle Scholar
  36. 36.
    L.M.P. Martínez, J.L. Faria, J.M. Do-na-Rodríguez, C. Fernandez-Rodríguez, A.M.T. Silva, Degradation of diphenhydramine pharmaceutical in aqueous solutions by using two highly active TiO2 photocatalysts: operating parameters and photocatalytic mechanism. Appl. Catal. B 113–114, 221–227 (2012).  https://doi.org/10.1016/j.apcatb.2011.11.041 CrossRefGoogle Scholar
  37. 37.
    Moore, D.M., Reynolds, R.C. 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, 1989: xvi, 322 pp. https://doi.org/10.1180/claymin.1990.025.4.11.CrossRefGoogle Scholar
  38. 38.
    A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and waste water environments. Anal. Bioanal. Chem. 387(4), 1225–1234 (2007).  https://doi.org/10.1007/s00216-006-1035-8 CrossRefPubMedGoogle Scholar
  39. 39.
    E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res. 43, 2419–2430 (2009).  https://doi.org/10.1016/j.watres.2009.02.039 CrossRefPubMedGoogle Scholar
  40. 40.
    O. Redlich, D.L. Peterson, A useful adsorption isotherm. J. Phys. Chem. 63, 1024–1024 (1959).  https://doi.org/10.1021/j150576a611 CrossRefGoogle Scholar
  41. 41.
    M.S. Rehman, N. Rashid, M. Ashfaq, A. Saif, N. Ahmad, J.I. Han, Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 138, 1045–1055 (2013).  https://doi.org/10.1016/j.chemosphere.2013.02.036 CrossRefPubMedGoogle Scholar
  42. 42.
    Saini, V.K., Chauhan, M., Sharma, B., 2016. Recent advances in nanomaterials based wastewater treatment techniques, in Handbook of Water Resources: Management and Treatment Technologies, Uttarakhand Science Education and Research Centre (USERC).Google Scholar
  43. 43.
    M.R. Samarghandi, T.J. Al-Musawi, A. Mohseni-Bandpi, M. Zarrabi, Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J. Mol. Liq. 211, 431–441 (2015).  https://doi.org/10.1016/j.molliq.2015.06.067 CrossRefGoogle Scholar
  44. 44.
    P.K. Simar, R. Rekha, N. Sanju, Amoxicillin: A Broad Spectrum Antibiotic. Int. J. Pharm. Pharm. Sci. 3(3), 30–37 (2011)Google Scholar
  45. 45.
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., 2008. Reporting Physisorption Data for Gas/Solid Systems, in: Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527610044.hetcat0065.
  46. 46.
    M.R. SunKou, S. Mendioroz, M.L. Guijarro, A thermal study of Zr-pillared montmorillonite. Thermo chim. Acta. 323, 142–157 (1998).  https://doi.org/10.1016/S0040-6031(98)00540-1 CrossRefGoogle Scholar
  47. 47.
    V.R.B. Vemula, P. Sharma, Analytical method development and validation for simultaneous estimation of imipramine and diazepam in tablet dosage form by RP-HPLC. Int. J. Pharm. Pharm. Sci. 5(Suppl), 3 (2013)Google Scholar
  48. 48.
    C. Volzone, Pillaring of different smectite members by chromium species (Cr-PILCs). Micropor. Mesopor. Mater. 49, 197–202 (2001).  https://doi.org/10.1016/S1387-1811(01)00423-1 CrossRefGoogle Scholar
  49. 49.
    T. Wang, X. Pan, W. Ben, J. Wang, P. Hou, Z. Qiang, Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J. Environ. Sci. 52, 111–117 (2017).  https://doi.org/10.1016/j.jes.2016.03.017 CrossRefGoogle Scholar
  50. 50.
    W.J. Weber, C.J. Morris, Advances in water pollution research, vol. 2 (Pergamon Press, Oxford, 1962)Google Scholar
  51. 51.
    P. Yuan, H.P. He, F. Bergaya, D.Q. Wu, Q. Zhou, J.X. Zhu, Synthesis and characterization of delaminated iron-pillared clay with meso-microporous structure. Microporous Mesoporous Mater. 88(1–3), 8–15 (2006).  https://doi.org/10.1016/j.micromeso.2005.08.022 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environment and Natural Resources (SENR)Doon UniversityDehradunIndia

Personalised recommendations