Advertisement

Preparation and catalytic application of sulfonated polyvinyl alcohol-Al-pillared α-zirconium phosphate (SPV-AZP) hybrid material towards synthesis of 4,6-diarylpyrimidin-2(1H)-ones

  • Dibyananda Majhi
  • Krishnendu Das
  • Ranjit Bariki
  • Payal Sahu
  • Y. P. Bhoi
  • B. G. MishraEmail author
Article
  • 38 Downloads

Abstract

In this study, a series of new hybrid catalysts were prepared by dispersing sulfonated polyvinyl alcohol (SPVA) in the porous matrix of Al-pillared α-zirconium phosphate. Initially, the α-zirconium phosphate (ZP) was prepared by reflux method, which was subsequently intercalated with [Al13O4(OH)24(H2O)12]7+ cationic clusters to prepare Al-pillared α-zirconium phosphate (AZP). A significant improvement in interlayer space, surface area and porosity of the parent zirconium phosphate was noticed due to bilayer intercalation of Al137+ species into the interlayer region. The ZP and AZP materials were used as host lattice for dispersion of sulfonated polyvinyl alcohol. The obtained hybrid materials were characterized using XRD, FESEM, HRTEM, TGA-DTA, FTIR, UV–Vis, TPD and XPS analytical techniques. The polymeric species were decorated as crystalline nanoparticles in the periphery of ZP particles, whereas they occurred in a well dispersed in the AZP lattice. TPD study revealed a significant improvement in the number of medium and strong acidic sites after dispersion of the SPVA polymer in the AZP matrix. The hybrid materials were used as efficient heterogeneous catalysts for multicomponent one pot synthesis of 4,6-diarylpyrimidin-2(1H)-ones by condensation of aryl aldehydes, ketones and urea using ethanol as solvent. Structurally diverse diarylpyrimidinones were synthesized in high yield and purity in a short span of time. The enhanced catalytic activity of the hybrid material has been ascribed to the well dispersion of the polymeric species and improved accessibility of the acidic sites due to expanded interlayer space of AZP material.

Keywords

α-Zirconium phosphate Al-pillared Sulfonated PVA Diarylpyrimidinones 

Notes

Acknowledgement

The financial support received from the Board of Research in Nuclear Sciences (BRNS), Mumbai through the Grant No. 37(2)/14/23/2015/BRNS is gratefully acknowledged.

Supplementary material

10934_2019_816_MOESM1_ESM.docx (757 kb)
Supplementary file1 Method of preparation of sulfonated polyvinyl alcohol, TGA-DTA, N2 sorption isotherm, TPD profile, FTIR and UV-Vis-DRS of ZP and AZP materials, Effect of reaction time and temperature on yield of 4,6-diphenylpyrimidin-2(1H)-one are presented. (DOCX 756 kb)

References

  1. 1.
    M. Pica, A. Donnadio, M. Casciola, Coord. Chem. Rev. 374, 218–235 (2018)CrossRefGoogle Scholar
  2. 2.
    Z. Wang, J.M. Heising, A. Clearfield, J. Am. Chem. Soc. 125, 10375–10383 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    M.J. Climent, A. Corma, S. Iborra, Chem. Rev. 111, 1072–1133 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Nagendrappa, Appl. Clay Sci. 53, 106–138 (2011)CrossRefGoogle Scholar
  5. 5.
    P. Kar, A. Nayak, Y.P. Bhoi, B.G. Mishra, Microporous Mesoporous Mater. 223, 176–186 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Pradhan, B.G. Mishra, Mol. Catal. 446, 58–71 (2018)CrossRefGoogle Scholar
  7. 7.
    H. Xiao, S. Liu, Mater. Des. 155, 19–35 (2018)CrossRefGoogle Scholar
  8. 8.
    A. Diaz, M.L. Gonzalez, R.J. Perez, A. David, A. Mukherjee, A. Baez, A. Clearfield, J.L. Colon, Nanoscale 5, 11456–11463 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    W. Ni, D. Li, X. Zhao, W. Ma, K. Kong, Q. Gu, M. Chen, Z. Hou, Catal. Today. 319, 66–75 (2019)CrossRefGoogle Scholar
  10. 10.
    P. Sreenivasulu, N. Viswanadham, T. Sharma, B. Sreedhar, Chem. Commun. 50, 6232–6235 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Sinhamahapatra, N. Sutradhar, B. Roy, P. Pal, H.C. Bajaj, A.B. Panda, Appl. Catal. B 103, 378–387 (2011)CrossRefGoogle Scholar
  12. 12.
    D. Cao, B. Yu, S. Zhang, L. Cui, J. Zhang, W. Cai, Appl. Catal. A 528, 59–66 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Antonetti, M. Melloni, D. Licursi, S. Fulignati, E. Ribechini, S. Rivas, J.C. Parajo, F. Cavani, A.M.R. Galletti, Appl. Catal. B 206, 364–377 (2017)CrossRefGoogle Scholar
  14. 14.
    G.S. Rao, S. Hussain, K.V.R. Chary, Mater. Today Proc. 5, 25773–25781 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Clearfield, Z. Wang, J. Chem. Soc. Dalton Trans. 15, 2937–2947 (2002)Google Scholar
  16. 16.
    S. Chessa, N. J. Clayden, M. Bochmann, J. A. Wright, Chem. Commun. 7, 797–799 (2009)Google Scholar
  17. 17.
    M. Angeloni, O. Piermatti, F. Pizzo, L. Vaccaro, Eur. J. Org. Chem. 2014, 1716–1726 (2014)Google Scholar
  18. 18.
    F. Costantino, M. Nocchetti, M. Bastianini, A. Lavacchi, M. Caporali, F. Liguori, A.C.S. Appl, Nano Mater. 1, 1750–1757 (2018)CrossRefGoogle Scholar
  19. 19.
    J.C. Amicangelo, W.R. Leenstra, Inorg. Chem. 44, 2067–2073 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Y.P. Zhu, T.Y. Ma, Y.L. Liu, T.Z. Ren, Z.Y. Yuan, Inorg. Chem. Front. 1, 360–383 (2014)CrossRefGoogle Scholar
  21. 21.
    X.Z. Lin, Z.Z. Yang, L.N. He, Z.Y. Yuan, Green Chem. 17, 795–798 (2015)CrossRefGoogle Scholar
  22. 22.
    J. Wang, R. Wang, H. Zi, H. Wang, Y. Xia, X. Liu, J. Chin. Chem. Soc. 65, 750–759 (2018)CrossRefGoogle Scholar
  23. 23.
    Y. Zhou, R. Huang, F. Ding, A.D. Brittain, J. Liu, M. Zhang, M. Xiao, Y. Meng, L. Sun, A.C.S. Appl, Mater. Interfaces 6, 7417–7425 (2014)CrossRefGoogle Scholar
  24. 24.
    J.W. Bae, S.J. Park, M.H. Woo, J.Y. Cheon, K.S. Ha, K.W. Jun, D.H. Lee, H.M. Jung, ChemCatChem 3, 1342–1347 (2011)CrossRefGoogle Scholar
  25. 25.
    R. Hernandez-Huesca, P. Braos-Garcia, J. Merida-Robles, P. Maireles-Torres, E. Rodriguez-Castellon, A. Jimenez-Lopez, Chemosphere 48, 467–474 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    F.J. Perez-Reina, E. Rodrıguez-Castellon, A. Jimenez-Lopez, Langmuir 15, 8421–8428 (1999)CrossRefGoogle Scholar
  27. 27.
    D.P. Das, K.M. Parida, Catal. Surv. Asia 12, 203–213 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Merida-Robles, E. Rodrıguez-Castellon, A. Jimenez-Lopez, J. Mol. Catal. A 145, 169–181 (1999)CrossRefGoogle Scholar
  29. 29.
    R. Hernandez-Huesca, J. Merida-Robles, P. Maireles-Torres, E. Rodrıuez-Castellon, A. Jimenez-Lopez, J. Catal. 203, 122–132 (2001)CrossRefGoogle Scholar
  30. 30.
    D.B. Plata, A.I. Molina, E.R. Aguado, P.B. Garcia, E.R. Castellon, Dalton Trans. 47, 3047–3058 (2018)CrossRefGoogle Scholar
  31. 31.
    D. Majhi, Y. P. Bhoi, K. Das, S. Pradhan, B. G. Mishra, J. Porous Mater.  https://doi.org/10.1007/s10934-019-00741-x (2019)
  32. 32.
    F. Liu, K. Huang, A. Zheng, F.S. Xiao, S. Dai, ACS Catal. 8, 372–391 (2018)CrossRefGoogle Scholar
  33. 33.
    J. Safari, S.G. Ravandi, J. Mol. Struct. 1074, 71–78 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Sabitha, K.B. Reddy, R. Srinivas, J.S. Yadav, Helv. Chim. Acta 88, 2996–2999 (2005)CrossRefGoogle Scholar
  35. 35.
    B.G. Mishra, D. Kumar, V.S. Rao, Catal. Commun. 7, 457–459 (2006)CrossRefGoogle Scholar
  36. 36.
    Z. Wang, L. Xu, C. Xi, H. Wang, Tetrahedron Lett. 45, 7951–7953 (2004)CrossRefGoogle Scholar
  37. 37.
    M.M. Abelman, S.C. Smith, D.R. James, Tetrahedron Lett. 44, 4559–4564 (2003)CrossRefGoogle Scholar
  38. 38.
    M.M. Heravi, L. Ranjbar, F. Derikvand, B. Alimadadi, Mol. Divers. 12, 191–196 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    M.M. Heravi, F. Derikvand, L. Ranjbar, F.F. Bamoharram, Synth. Commun. 40, 1256–1263 (2010)CrossRefGoogle Scholar
  40. 40.
    S.R. Mistry, K.C. Maheria, J. Mol. Catal. A 355, 210–215 (2012)CrossRefGoogle Scholar
  41. 41.
    J. Safari, S.G. Ravandi, RSC Adv. 4, 11486–11492 (2014)CrossRefGoogle Scholar
  42. 42.
    J.Y. Bottero, J.M. Cases, F. Flessinger, J.E. Polrier, J. Phys. Chem. 84, 2933–2939 (1980)CrossRefGoogle Scholar
  43. 43.
    Y. Tang, Y. Ren, X. Shi, Inorg. Chem. 52, 1388–1397 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    D.J. MacLachlan, K.R. Morgan, J. Phys. Chem. 96, 3458–3464 (1992)CrossRefGoogle Scholar
  45. 45.
    J.M. Merida-Robles, P. Olivera-Pastor, A. Jimenez-Lopez, E. Rodriguez-Castellon, J. Phys. Chem. 100, 14726–14735 (1996)CrossRefGoogle Scholar
  46. 46.
    K.D. Pont, J.F. Gerard, E. Espuche, Eur. Polym. J. 48, 217–227 (2012)CrossRefGoogle Scholar
  47. 47.
    K. Liu, X. Wang, S. Ding, Y. Li, W. Hua, Y. Yue, Z. Gao, J. Mol. Catal. A 380, 84–89 (2013)CrossRefGoogle Scholar
  48. 48.
    I.K. Biernacka, A.R. Silva, A.P. Carvalho, J. Pires, C. Freire, J. Mol. Catal. A 278, 82–91 (2007)CrossRefGoogle Scholar
  49. 49.
    X.L. Wei, M. Fahlman, A.J. Epstein, Macromolecules 32, 3114–3117 (1999)CrossRefGoogle Scholar
  50. 50.
    Y. Wang, D. Wang, M. Tan, B. Jiang, J. Zheng, N. Tsubaki, M. Wu, A.C.S. Appl, Mater. Interfaces 7, 26767–26775 (2015)CrossRefGoogle Scholar
  51. 51.
    P. Swetha, A.S. Kumar, Electrochim. Acta 98, 54–65 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dibyananda Majhi
    • 1
  • Krishnendu Das
    • 1
  • Ranjit Bariki
    • 1
  • Payal Sahu
    • 1
  • Y. P. Bhoi
    • 1
  • B. G. Mishra
    • 1
    Email author
  1. 1.Department of ChemistryNational Institute of TechnologyRourkelaIndia

Personalised recommendations